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Abstract—The development of interactive robots is a compli-
cated process, involving a plethora of psychological, technical, and
contextual influences. To design a robot capable of operating “intel-
ligently” in everyday situations, one needs a profound understand-
ing of human-robot interaction (HRI). We propose an approach
based on integral analysis of multimodal data to pursue this under-
standing and support interdisciplinary research and development
in the field of robotics. To adopt this approach, a software tool
named Interaction Debugger was developed that features user-
friendly navigation, browsing, searching, viewing, and annotation
of data; it enables fine-grained inspection of the HRI. In four case
studies, we demonstrated how our analysis approach aids the de-
velopment process of interactive robots.

Index Terms—Data analysis, human-robot interaction (HRI),
integrated approach, Interaction Debugger, multimodal data.

1. INTRODUCTION

HE GROWING interest in the field of robotics has in-
T creased the possibilities for robots to interact with people
in natural ways. Humanoid robots, including Honda’s Asimo
[1], Sony’s QRIO [2], and ATR’s Robovie [3], contribute to the
shared vision of bringing robots into people’s everyday lives.
Whether in the role of a household assistant, social partner, or
babysitter, there will always be a need for robots to interact with
people and their environments. Therefore, we believe the study
of human-robot interaction (HRI) deserves a central role in the
robot development process.

Developing interactive robots that will communicate with
people in everyday situations is nowadays clearly considered an
interdisciplinary process involving psychology, cognitive sci-
ence, and engineering [4]-[8]. Engineers study the HRI to de-
velop and improve robots, while psychologists aim for a better

Manuscript received September 12, 2006; revised May 16, 2007. This paper
was recommended for publication by Associate Editor C. Laschi and Editor
H. Arai upon evaluation of the reviewer’s comments. This work was supported
by the Ministry of Internal Affairs and Communications of Japan.

T. Kooijmans is with Studio Sophisti, 1017 BX Amsterdam, The Netherlands
(e-mail: tijn@kooijmans.nu).

T. Kanda and N. Hagita are with the Intelligent Robotics and Communication
Laboratories, Advanced Telecommunications Research Institute International,
Kyoto 619-0288, Japan (e-mail: kanda@atr.jp; hagita@atr.jp).

C. Bartneck is with the Department of Industrial Design, Eindhoven
University of Technology, 5612 AZ Eindhoven, The Netherlands (e-mail:
christoph@bartneck.de).

H. Ishiguro is with the Department of Adaptive Machine Systems, School
of Engineering, Osaka University, Osaka 565-0871, Japan, and also with the
Intelligent Robotics and Communication Laboratories, Advanced Telecom-
munications Research Institute International, Kyoto 619-0288, Japan (e-mail:
ishiguro@ams.eng.osaka-u.ac.jp).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2007.906263

understanding of human attitudes, roles, and expectations to-
ward robots. The process is inherently entangled, since on the
one hand, engineers require behavior frameworks developed by
psychologist to help them analyze the HRI. Psychologists, on
the other hand, need to be aware of the technical limitations and
possibilities when developing robot behavior and creating ob-
servation frameworks. The following scenarios briefly describe
how they can use data analysis for such purposes.

First, humanoid robots generally incorporate large amounts of
sensors and actuators that are controlled by their artificial brains.
One major engineering challenge is to process such acquired
sensor information so that the robot can perform an appropriate
behavior in a certain situation. By studying sensor data triggered
by a user’s action or environmental condition, engineers can
design a robot to anticipate this information and produce an
appropriate reaction.

Another scenario for studying the HRI has a more
psychological-oriented motive. When people interact with a
robot, one could analyze their attitudes and behavior toward it. A
well-known means for conducting such a study is based on field
trials. In [9]-[13], scenes of a field trial are analyzed and used
for evaluation and improvement of robot behavior or design. In
the long run, this could yield general knowledge about the HRI.

In both cases, data analysis is used for gaining better un-
derstanding of the HRI. Software originally developed for psy-
chologists and linguists is available that aids this work with
annotation and coding functionalities [14]—-[16]. These, how-
ever, are limited to audio and video, decreasing their usefulness,
especially for the first scenario. Other tools include body move-
ments [17] or gazes [18] of humans and robots during interac-
tion. However, the application domains of these examples are
limited since only one type of data is available in addition to
regular audio and video.

By integrating information from such modalities as sound, vi-
sion, object positioning, person identification, and body contact
with audio and video, one can form a more complete overview of
a situation, which leads to more effective analyses. We consider
an analysis effective when it aids the development process of
the robot or when it leads to increased knowledge about human
attitudes toward robots.

Using this integrated approach one could, for instance, an-
alyze which sensor values of a robot are triggered by certain
human behavior, or if the internal states of a robot are activated
in appropriate situations. From a psychological perspective, one
could seek correlations between the distance from and behavior
toward a robot or investigate such human attitudes as responses
to body contact.

1552-3098/$25.00 © 2007 IEEE
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Field trial with Robovie.

Fig. 1.

We developed a software tool named Interaction Debugger
that helps people analyze multimodal data collected during ex-
periments. This software enables engineers and psychologists
to cooperate in the analysis of the HRI that may ultimately lead
to the development of this field. Interaction Debugger promotes
an integrative working process, which is necessary in the HRI
field.

We previously reported a preliminary version of Interaction
Debugger [19]. Currently, the software has reached a more ma-
ture level and can be applied as a full-fledged workbench to
monitor, manage, and analyze experiments. New functionali-
ties such as “data browser” and comprehensive search functions
(explained in Section III) are key factors.

First, we will discuss an example setup that highlights the
data types that can be included in Interaction Debugger. Next,
we will describe the software’s architecture, its functionality,
and its workflow. Then, we present several case studies that
provide an informal evaluation of the software. Last, we discuss
the contributions and limitations of the software before we end
with our conclusion.

II. EXAMPLE SETUP

Before conducting an integral analysis, one first has to gather
the necessary data during experiments or field trials. It is es-
sential to consider which modalities and types of data are nec-
essary to collect for later analysis, which depends on the focus
of one’s study. In this section, we describe an example setup
for gathering data during field trials with interactive robots (see
Fig. 1). In this setup, we studied the interaction between humans
and Robovie and Robovie-M, which are interactive humanoid
robots. Robovie is a communication robot that autonomously
interacts with people by speaking and gesturing [3]. Robovie-M
is a small version of Robovie that can show autonomous be-
havior, but has no integrated sensing capabilities. Instead, we
used networked sensors in the environment to feed informa-
tion to the robot. The case studies in Section IV describe the
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goals of these experiments and the data analysis process using
Interaction Debugger in detail.

For our study, in addition to regular audio and video, the
following modalities of data were collected: sound, vision, per-
son identification, motion, body contact, distance, and robotic
behavior. For each modality, we recorded several types of sen-
sory information and/or intermediate variables, which were pro-
duced by the robot’s software or external sensors. Intermediate
variables can provide such information about the robot’s state
as its active behavior, battery level, or the words it speaks. In
Section III-A, we clarify the technical details of data gathering
and storage. Here is a complete overview of the data types used
in our Robovie study.

1) Sound: This contains sensor data of sound level meters
in the robot environment as well as internal sensors. Two
intermediate variables are related to sound: one indicates
if the robot is in the talking mode and the other tells if the
robot is in the listening mode.

2) Vision: For the eye and omnidirectional cameras used in-
side the robot, a diff-value is calculated that provides in-
formation about the activity in the camera sight. The robot
also has a face recognition mechanism that outputs a vari-
able the size of a recognized face and another variable that
indicates if the robot’s sight is blocked.

3) Person ldentification: Throughout the field trials, we asked
people to wear radio frequency identification tags (RFID).
The robot as well as several places in its environment
contains a RFID reader, whose software outputs tags that
are in range. This gives information about the people in
the robot environment and near it.

4) Motion: This includes the motor positions of all the robot’s
joints.

5) Body Contact: The only data type that belongs to this
modality is touch sensor information, which indicates the
state of each touch sensor: pressed or not.

6) Distance: This contains information from distance sensors
in the robot and range sensors in the environment. Both
are used for detecting objects (including people) around
the robot.

7) Robotic Behavior: Robovie operates based on pro-
grammed behavior modules that are activated using rules.
For example, when it detects a new person within a pre-
defined range it activates the greeting behavior. There is
also a possibility for “Wizard of Oz” control, which refers
to manually activated behavior by someone remotely con-
trolling Robovie. The activated behavior modules as well
as the “Wizard of Oz” commands are recorded.

For audio and video, we used the following configuration.

1) Audio data are captured by microphones connected to
a robot or capturing personal computer (PC) stored in
consecutive parts, typically 1 min in length to limit file size
and to maintain a well-organized data collection. Using
I-min chunks also increases performance for later data
retrieval.

2) Video data are captured by cameras in the robot and the
environment. Robovie has two eye cameras and one omni-
directional camera above its head. The capturing PCs can
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connect to multiple cameras. We used Intel’s Indeo 4.5
compressor for captured video because it allows forward
and reverse play at various speeds with audio, step-play
with audio, and forward and reverse frame steps. Video
parts were also recorded at lengths of 1 min.

III. INTERACTION DEBUGGER

Interaction Debugger was developed to help people analyze
data that were collected during experiments or field trials. We
are aware that the software is an analysis tool. While it sounds
unusual for psychologists to “debug” interaction, in the field of
engineering, people’s motivation for analysis is to debug their
engineering products. Thus, we named this tool “Interaction De-
bugger” to entice engineers involved in the analysis of the HRI.

There are several requirements for a tool that aids an inte-
gral analysis process. We considered the following requirements
when developing Interaction Debugger.

1) It should be easy to see when data are available for spe-
cific types (e.g., video, audio, touch sensor data, etc.) and
sources (e.g., robot, sensor PC 1, sensor PC 2, etc.). This
is especially useful when experiments are conducted over
multiple days or when one wants to compare data from
multiple experiments.

2) Data relevant for end-users should be easy to find, for
example, quick retrieval of an overview of all events where
people are around the robot.

3) Easy time navigation: quickly jumping between days,
hours, and minutes. Furthermore, there should be a sim-
ple time controller that supports playback, pausing, frame
stepping, and forward and backward dragging.

4) The data types should be visualized in a way that is under-
standable by the people involved in the analysis process.

5) A user should be able to bookmark interesting events and
freely make annotations about the data.

6) Interaction Debugger should be extendible in a way that al-
lows intermediate developers to easily add new data types.

In this section, we outline how Interaction Debugger was
developed to meet these criteria from a technical point of view
as well as an end-user point of view.

A. Technical Details

The software was developed using Java 1.5 to realize plat-
form independence and to make it easily extendible (see
Section III-C). We used Java Media Framework 2.1.1 to im-
plement audio and video playback.

1) System Architecture: The Interaction Debugger software
can be decomposed into multiple layers and packages to make
its structure understandable. The application itself consists of a
user interface layer and a layer that contains utilities that provide
the underlying functionalities for the user interface (see Fig. 2).
Furthermore, we consider some operating system components
on which the application runs.

The application’s user interface is a desktop environment that
contains packages of tools, utility frames, search frames, and
data frames. When discussing frames, we refer to windows in-
side Interaction Debugger’s desktop. The data frames package
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consists of a series of frames that show data to an end-user from
the available data types. These data frames serve the core func-
tionality of the Interaction Debugger, displaying video, audio,
sensor information, and intermediate variables. To look for in-
teresting data, we designed several frames that provide search
functions including annotations or robot behavior, filter-based
searches, and a structured query language (SQL) query search
for professional users. The search functions are further clarified
in Section III-B. A collection of utility frames is also included,
which consists of the following:

1) aloading dialog that shows a progress bar when the Inter-
action Debugger is busy;

2) atime controller for navigation and playback of data;

3) atime browser to choose a day and time interval to analyze;

4) a time information frame that communicates the time to a
user while analyzing data.

The final package of the user interface is a set of tools includ-

ing:

1) frames for importing data from and exporting data to a
text file;

2) adata browser to view when data are available for specific
types and sources;

3) a frame that enables end-users to synchronize multiple
data types. For example, if the audio and video are not ex-
actly synchronized due to unsynchronized capturing sys-
tems, the user can set a delay for the faster one.

The utilities of the Interaction Debugger realize the following

functionalities.

1) The Update Data Thread updates all the data frames when
needed. This is when a new time interval is loaded, when
the time controller is dragged, or, every 10 ms. when the
time controller is in playback mode.

2) To maintain configurability in the Interaction Debugger,
we use a settings framework, which includes functional-
ities to save and retrieve data from setting-files in XML
format and generate a configuration panel to interface the
settings to end-users. Settings include a database, file loca-
tions, table names, and settings to modify the Interaction
Debugger’s user interface. It is possible to create more
then one settings file to serve multiple projects.

3) The Data Frame Manager is the part of the Interaction
Debugger responsible for the placement of data frames
on the desktop. It remembers the size and position of
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the windows so that end-users can create personalized
environments.

2) Controlled and Realtime Modes: We defined two modes
of operation for the Interaction Debugger that use different meth-
ods of data retrieval: controlled and realtime (see Fig. 3). Con-
trolled mode is intended for detailed data analysis after an ex-
periment or trial; realtime mode is especially useful for instant
optimization or debugging of a robot’s behavior. In controlled
mode, data are retrieved from a database that contains all the
data collected during an experiment or trial. For audio or video
data, the actual contents are retrieved from a local or networked
file system. Settings are provided in the Interaction Debugger to
specify the file and database locations.

In realtime mode, the Interaction Debugger immediately
presents data at the event time. In that case, a direct network
connection with the capturing PCs and the robots facilitates data
retrieval through a transmission control protocol (TCP)/Internet
protocol (IP). Realtime audio and video streaming have not yet
been implemented in the Interaction Debugger, but will be a
valuable future improvement.

3) Data Gathering: During experiments or field trials, we
collected data from multiple sources: the robots and capturing
PCs placed in their environment. Fig. 3 illustrates the data flow
within this setup. Basically, all captured data are sent to a cen-
tral place to be stored, which simplifies later data retrieval. In
general, data consists of a timestamp and a set of values; the
format depends on the type of data. For example, the data for-
mat for a sound level meter is a value between 0 and 120 dB.
For audio or video, the actual media contents are stored in the
file system, and only a filename is stored in the database for
reference.

Sensor and intermediate variable data were recorded at inter-
vals of 20200 ms, depending on the need for precision in analy-
sis. A shorter interval means higher precision, but it also requires
more processing capacity as well as more network bandwidth.
For audio and video, a value is only sent to the database every
60 s when a new part is recorded.

Time is an important index when retrieving data later to in-
corporate them from multiple sources. For this reason, we use
the network time protocol (NTP) on all the systems that collect
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data to synchronize clocks with an accuracy of 10 ms. If in some
cases a specific data type is still not synchronized, end-users can
manually adjust its timing using the data synchronizer tool in
the Interaction Debugger.

B. End-User Functionalities

In this section, we elaborate how the Interaction Debugger’s
main functionalities are made available to end-users. We divide
them into navigation, browsing, searching, analyzing, and an-
notating and describe each in detail. The functionalities apply
to the controlled mode of the Interaction Debugger since the
realtime mode only aims to show data.

1) Browsing: Whenever someone wants to analyze data, first
he/she needs to know when data are available. The Interac-
tion Debugger incorporates a browser (see Fig. 4) that gives an
overview of the availability of all data types relative to time. The
initial view provides an overview based on day precision, from
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where the user can zoom to specific days or even hours. Data
types can be sorted either by modality or source. Furthermore,
one can filter out certain modalities or sources to browse more
purposefully.

2) Searching: During the analysis process, one is often in-
terested in searching for situations in which useful/interesting
data are available. In the HRI, for example, this could be a sit-
uation in which there are people around the robot or a robot
performs certain behavior. The Interaction Debugger provides
several data search methods: annotation search, behavior search,
filter search, and query-based search.

1) Annotations can be regarded as bookmarks with descrip-

tions made by a user when commenting on a certain event.
The annotation search function gives an overview of all
the bookmarks and makes it possible to show them in a
specified time interval. Refer to Section III-B5 for more
details on annotations.
The next search function is based on robot behaviors. A
user can select a specific behavior and a time interval for
which all the events in which the specified behavior occurs
are shown. The behavior search function requires that the
robot store active behavior states.

2)

9. Intermediate variable data 10. Environment sensor data

3) The most powerful search function in the Interaction
Debugger is filter-based searching (see Fig. 5). When this
search function is activated, every data frame obtains a
bar at the bottom in which a user can select filters for
the data presented in the frame. In this way, a user can
combine filters for multiple data types to perform a search
operation.

Professional users experienced with SQL scripting some-
times feel comfortable manually creating search queries.
For them, we have implemented a search function that
helps compose SQL queries for available data types.

3) Navigation: Navigating data in the controlled mode is
based on the selection of a time interval, which can vary from
1 min to multiple days, and depends on end-user preferences
and computer performance limitations. The user interface in-
cludes a time selection panel where one can manually choose
a specific date as well as start and end times (Fig. 6.1). Af-
ter selecting an interval, users can navigate through the data
by a time controller that supports regular playback, frame-by-
frame skipping, and mouse dragging. While controlling the time,
an information window communicates the current interval and
time.

4)
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4) Analyzing: A core functionality of the Interaction
Debugger is presenting data comprehensibly using visualiza-
tions tailored to the type of data. When using the software,
one can open windows for every data type. All data types are
accessible from the menu bar of the Interaction Debugger’s
main window, where they are sorted based on their modal-
ity. Fig. 6 shows a number of example windows that can be
loaded:

1) Figs 6.2 and 6.3: Video and audio windows that can be

simultaneously loaded from multiple sources (see Fig. 7).

2) Fig. 6.8: Visualizations of the robot’s touch and motion
sensors. The former blinks when the robot is touched.
The latter are visualized by a 3-D model of the robot that
resembles its motion. Other available windows for robot
sensor data present data from ultrasonic distance sensors
(see Fig. 8) and RFID tag readers.

3) Fig.6.9: Active behavior states of the robot, which are one
of its intermediate variables. The result of each behavior
state is displayed, indicating success or failure.

4) Fig. 6.10: Environment sound level and a list of people in
the robot’s environment. The latter is based on RFID tag
readings. Another available window for environment sen-
sor data presents data from distance sensors (see Fig. 11,
Step 1).

Our implementation of the Interaction Debugger incorporates
data presentation windows optimized for Robovie. To increase
comprehensibility, we present the robot’s sensor data on graph-
ical representations of Robovie, as demonstrated in Fig. 8. The
Interaction Debugger also features standard presentation styles
including tables and line charts. For such textual data as be-
havior states and RFID tag readings, we use tables (Figs. 6.9
and 6.10). For single sensor values as sound levels, we use line
charts.

5) Annotation: To aid the analysis of the HRIs, an annota-
tion window (Fig. 6.4) has been incorporated in the Interac-
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tion Debugger. Inspired by existing audio and video annota-
tion software [14]-[16], this feature allows users to describe
every frame of the data collection. For example, researchers
could use this functionality to make detailed descriptions of hu-
man behavior during empirical studies. Moreover, it can func-
tion as a useful bookmark and search method, as explained
before.

C. Extendibility

Since the Interaction Debugger might be used for differ-
ent types of robots in other situations, it has been designed
with a modular software architecture. The graphical presen-
tation of data and their underlying management have been
clearly separated, making it easy for intermediate develop-
ers to modify or design new presentation styles. Moreover, it
enables easy implementation of new data types by extending
the AbstractDataFrame class. Fig. 9 shows a unified model-
ing language (UML) model that describes the structure of an
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AbstractDataFrame object. It has a DataSource object that man-
ages the retrieval of data from a database in the controlled mode
or a TCP/IP socket in the realtime mode. It also contains a
DataType object that, in turn, contains information about the
data frame: name, modality, source name, and database table.
Finally, the AbstractDataFrame object has a set of filter objects
that are used for the filter-based search function.

IV. CASE STUDIES

Integral analysis of the HRI can be used at several stages in
the development process of interactive robots. To demonstrate
how, we consider case studies related to the development of an
interactive humanoid robot, Robovie, and its smaller variant,
Robovie-M. For each case study, a step-by-step description will
clarify how the Interaction Debugger was employed for data
analysis.

A. Development of a Sensor Network

A technique for realizing intelligent behavior with a robot
that is being used more and more is implementing a sensor
network around a robot. In this way, the robot can extend its
sensing capabilities beyond its own body and use sensors in
the environment to analyze people. This case study is related to
the development of a sensor network in an environment where
Robovie had to interact with many people standing around it.
The goal was to make communication more natural between
Robovie and the people. One element was looking in the direc-
tion of people while talking with them. Moreover, estimating
people’s behavior would be helpful to make the robot interact
with them accordingly.

We decided to use pressure sensors in the floor around
Robovie to realize the localization and behavior estimation of
people. After installing these sensors, the challenge was to de-
velop an algorithm capable of analyzing sensor contacts created
by the crowds and to discriminate people from this. The next
step would then be to make it detect walking patterns and map
such behaviors as “approaching,” “conversing,” “passing by,”
etc.

We developed this algorithm by collecting data from people
who interacted with Robovie on a floor that contains pressure
sensors and then using the integral analysis approach to find
patterns. The types of data collected included video, floor sensor
data, and behavior states of the robot. The chosen environment
was an office building in which the robot interacted with groups
of visitors. After the experiment, a developer analyzed the data
using the Interaction Debugger to find patterns in the floor sensor
data (see Fig. 10) by comparing the video in which he observed
the people moving on the floor with the floor sensors. He also
considered the behavior states of the robot to find correlations
with human behavior, i.e., how they reacted to it. This could be
helpful for a behavior estimation algorithm.

EEINT3

B. Optimizing Thresholds for a Robot

During a field trial, a number of robots were placed in the
Osaka Science Museum to interact with people. This particular
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setting was part of our previous research activities [20]. Since
Robovie-M was programmed to explain exhibits to visitors for
this trial (see Fig. 11), it had to detect the presence of people
and proactively draw their attention. Because Robovie-M has
no integrated sensing capability, several sensors were placed
around it to enable presence detection. For example, an infrared
sensor was placed under the robot to measure the distance of ob-
jects in the environment, and a sound level meter distinguished
background noise from human speech. To use these sensors
for presence detection, they are read by Robovie-M’s control
software and interpreted based on thresholds. Because every
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environmental situation is different, these thresholds have to be
set manually.

The realtime mode of the Interaction Debugger was em-
ployed in this situation to optimize the presence detection
thresholds. The robot developer used the following method (see
Fig. 11):

1) Step 1: Using visualization of the infrared sensor, for each
occasion he analyzed the distance at which people ap-
proached the robot and the angles at which they started
to interact with it. He used this information to set the
corresponding thresholds.

2) Step 2:Sound level meter visualization was analyzed to set
the voice detection threshold of the robot. In the picture,
peaks represent human speech.

3) Using the Interaction Debugger, the developer success-
fully optimized the presence detection mechanism in a
relatively short time span.

C. Evaluation of Hugging Behavior

During a field trial at a Japanese elementary school, Robovie
was positioned in a classroom for 18 days to study the social in-
teraction and the establishment of relationships between pupils
and the robot. This particular setting was also used for our pre-
vious research activities [10].

Robovie is designed to sometimes exhibit hugging behav-
ior during interaction with people if they keep reacting to it.
However, hugging did not always appear successful. In this ex-
periment, a hug was considered successful if the robot closed its
arms around the user when he/she stepped toward it with open
arms.

A robot developer used the Interaction Debugger to analyze
the data recorded during 3 days of trials to debug the hugging
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behavior of the robot. His method can be summarized as follows
(see Fig. 12):

1) Step 1:In the behavior-based situation loader, the user se-
lected hug behavior to retrieve a list of all hugging events.
By double clicking on an entry, the corresponding time
is automatically loaded. Data windows were loaded using
the menu.

2) Step 2: For each event, he analyzed the robot’s touch
sensors and the distance sensor conditions that activated
hugging behavior. A highlighted touch sensor shows that
it was pressed; when an object is near the robot, the blue
lines of the ultrasonic sensor display are interrupted. The
Interaction Debugger’s time controller enabled him to
study the data frame-by-frame.

3) Step 3: For each event, he also checked the success of
the hugging behavior by reading the result values of the
behavior state. Robovie outputs results for every finished
behavior state, which are displayed in the table. For hug-
ging, a zero value means that the behavior was interrupted
or was not finished successfully.

4) Step 4: Finally, for each event, he annotated the success of
the hug and the corresponding sensor conditions. Twenty
percent of the hugs were not successful. The ultrasonic
sensor window revealed the robot’s failure to detect objects
in front it during all unsuccessful hugs. This instability of
the ultrasonic sensors indicates the cause of the problem.
With this information, the developer debugged the robot
and improved its hugging behavior. Although this is a
simple case of debugging, we consider it effective analysis.

D. Studying Human Behavior in an Open Field

For the same field trial at the Osaka Science Museum as in
Case Study A, a researcher with a background in psychology
carried out an empirical study on the behavior of people who
interacted with Robovie-M to learn how the crowd around a
robot influences the way people react to it. This knowledge
might eventually be useful to improve the way a robot initiates
interaction with people in different crowds.

For analyzing human behavior, he adopted an observation
technique established in psychology based on analyzing data by
annotations using a code protocol. In this case, he considered
every event where someone interacted with the robot and coded
human actions following a set of parameters that included such
personal information as adult/child, alone/group, and gender,
and information about the interaction such as type and cause of
behavior, distance from robot, and crowdedness. A comparable
example of such a coding system is the Facial Action Coding
System (FACS) developed by Ekman et al. [21]. Today, FACS
is widely used for facial emotion recognition. Coding data by
hand enables the analyst to use an exploratory approach and
simultaneously get quantifiable results.

The factors that played an important role were the positions of
people and the environmental sound level. Both provide infor-
mation about crowdedness. He used the Interaction Debugger as
a tool to analyze how these factors influenced human behavior
toward the robot by the following method (see Fig. 13):
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1) Step I: First he found events where people approached the
robot by rapidly skipping through the scenes by moving
the timeline slider. Whenever noticing people approach-
ing the robot, he used the play function to scrutinize the
interaction event.

2) Step 2: For each interaction event, he coded its start
and end times, the person’s ID (e.g., B156), adult/child,
alone/group, and gender in the annotation window.

3) Step 3: When analyzing the video, he checked every hu-
man action for behavior that matched one of the predefined
behaviors considered interesting (e.g., moving, speaking,
imitation, waving, bending, touching, etc.). To consider
the human behavior in detail, he viewed the data frame-
by-frame using the time controller.

4) Step4:To analyze the distance and position of people from
the robot, he observed the distance sensor window while
navigating frame-by-frame. For every human action, he
measured the distance between humans and the robot.

5) Step 5: He analyzed the sound level of the robot’s envi-
ronment by checking the decibel value in the sound level
meter window. For every human action, he calculated the
average sound level as an indicator of crowdedness.

6) Step 6: To analyze the cause of human behavior, he
checked the type of behavior the robot performed in the
‘Wizard of Oz’ command window, which shows the active
behavior states for Robovie-M.

7) Step 7: For each interaction event, he recorded every
human action and the results from Steps 2—4 as coded
annotation.
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8) Step 8: After using the Interaction Debugger, he used
spreadsheet software to interpret the codes and compute
the statistical results. Example computations include the
interaction time of people relative to distance from the
robot or interaction time relative to crowdedness.

His analysis revealed that people showed different patterns
of approaching the robot in different crowd situations. This
knowledge could be used later so that the robot can automatically
infer that people are interested in it by measuring crowdedness
and their movements. The results of this study were published
by Nabe et al. [22].

V. DISCUSSION
A. Contributions

This paper presented a multimodal approach to analyze the
HRI, which we believe is an essential part in the development
process of interactive robots. By adopting this approach, robot
developers can efficiently improve robot interactivity. Improv-
ing hugging behavior is a simple example, but more complex
situations in which an integral approach could help are easily
imaginable: for instance, the evaluation of speech recognition by
analyzing audio data, background noise level, and intermediate
variables that indicate recognized speech.

For psychologists, the interaction debugging approach is use-
ful to aid qualitative data analysis techniques, such as the ob-
servation method, which is often adopted in human behavior
analysis. Another case in which interaction debugging could
have been useful was the development of a human friendship
estimation model for communication robots [23]. In this re-
search, interhuman interaction was analyzed in the presence of
a humanoid robot.

Psychologists can evaluate human responses to robotic be-
havior by studying the HRI, which can help robot developers
adjust the robot and optimize its behavior. We believe such an
interdisciplinary approach is essential for improving the HRI.

B. Evaluation of the Approach

Unlike the evaluation of a method, evaluating a new method-
ology is difficult. Since no related methodology was available
for comparison, we did not conduct a controlled experiment to
evaluate the interaction debugging approach as a whole.

The interaction debugging approach can be decomposed into
the following methods: “showing sensory information” and the
“integration of multimodal information.” To evaluate the effec-
tiveness of the first method, for instance, we could conduct a con-
trolled experiment that compares analysis results with/without
sensory information or intermediate variables. However, as
shown in the case studies, we often cannot accomplish the anal-
ysis goal without this information.

To test the integration of the multimodal information, we
compared the use of the Interaction Debugger with a common
audio/video controller and specialized software for displaying
sensory information. However, a tool that integrates these com-
ponents is obviously more effective.
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We feel that individual evaluation of both methods does not
lead to a clear impression about the validity of the interaction de-
bugging approach as a whole. Therefore, instead of conducting
such experiments, in this paper we focused on the introduction
of our integral approach by presenting case studies.

C. Evaluation of Software Usability

Since the Interaction Debugger is intended for people from
different disciplines who do not have the same experience
with the technical aspects of robotics, we consider usability
a key evaluation point. Based on the usability goals speci-
fied by Preece et al. [24], “time to learn” and “‘retention over
time” were selected as the main criteria for optimizing the user
interface.

Within the process of optimizing the usability of the Interac-
tion Debugger, the first method employed was expert reviewing,
which is commonly used in software development to evaluate a
user interface by determining conformance with a short list
of design heuristics. We used Shneiderman’s “eight golden
rules of interface design” [25]. Furthermore, the case studies
were part of a user-centered method to optimize the Interaction
Debugger’s user interface [26]. For each case study, user interac-
tion with the software was studied, and feedback was requested
to generate usability improvements.

From our observations of people who used the Interaction
Debugger, we drew some conclusions that illustrate its current
usability performance. The simple structure of its user interface
made it easy for people to start working with it. If experienced
with window-based graphical user interfaces (GUIs), new users
only needed a brief explanation of the different functions to
get started. For nonnovice users, the software provides enough
shortcuts to efficiently control the user interface. Examples in-
clude mouse scrolling to control time and key combinations for
adding annotations.

A design problem worth mentioning concerns the organi-
zation of windows in the Interaction Debugger. Because the
number of windows can become large for certain analysis tasks,
having a friendly way of positioning them on the screen is help-
ful. We decided to let the user manage the organization, which
means that the software remembers the last position of a win-
dow. This enables users to personalize the software to create a
comfortable working environment.

D. Evaluation of Software Performance

The Java language used for developing the Interaction
Debugger software is sometimes considered to lack efficiency
for high-performance applications. We managed to overcome
this limitation by using several techniques such as preprocess-
ing of data and proper reusing of objects to prevent excessive
garbage collection.

When loading a time interval as explained in Section III-B3,
the Interaction Debugger preprocesses the data to optimize nav-
igation performance. We use an efficient dichotomy search al-
gorithm to quickly locate the correct data when moving the
playhead. As an example, when we open two videos, one audio,
one ultrasonic sensor, one behavior-module, and one motion
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panel, for a 5-min data duration, memory consumption is ap-
proximately 35 MB. Everything worked in realtime when we
run this configuration on a computer with 512-MB memory with
an ordinary Pentium IV CPU.

E. Limitations

In this paper, we only demonstrated four case studies of the
interaction debugging approach. All cases were related to inde-
pendent projects and were not part of any large-scale engineering
process because the software has been prepared very recently.
Hence, the applicability and effectiveness for large-scale devel-
opment remains unclear.

At the moment, the generalizability of our approach is also
still unknown. Since it was only tested in a limited number of
applications, we cannot determine in which cases the approach
will be applicable and effective and in which cases it will not
be. We believe that using an interaction debugging approach
for more widespread robot development activities will foster a
better view on this. We would, thus, like to encourage other
robot developers to adopt this method and contribute to this
field.

Another limitation of the current status of development is
related to the modalities required for integral analysis. Currently,
no guidelines have been developed that give such indications.
In our examples, we used robot sensors, environment sensors,
and intermediate variables. However, for certain purposes, one
might not need all these data.

VI. CONCLUSION

We believe that an integral approach to analyze the HRI,
which involves multiple modalities, has been inevitable since the
complexity of the interaction between robots and humans in ev-
eryday situations has increased dramatically. We developed the
Interaction Debugger software to aid the interaction data analy-
sis. This tool allows us to conduct interdisciplinary projects that
investigate the HRI by offering an environment that encourages
collaboration between robot developers and psychologists. We
demonstrated the practical applicability of the interaction de-
bugging approach by addressing four different case studies that
demonstrated the necessity of observing different modalities.
In all of them, using the Interaction Debugger led to an effec-
tive analysis of the HRI. However, we are aware that this only
illustrates a limited number of applications and does not com-
pare its effectiveness to other methodologies. The Interaction
Debugger’s functionality exceeds any of the conventional video
data analysis tools and, hence, a comparison could not provide
valid insights. Instead, we hope to inspire researchers to adopt
comparable methods to move toward a more quantitative and,
hence, scientific approach to the HRI.

ACKNOWLEDGMENT

The authors thank S. Nabe, Y. Koide, and J. Lin for their
valuable contributions toward the development and optimization
of the Interaction Debugger.



KOOIIMANS et al.: ACCELERATING ROBOT DEVELOPMENT

[5]

[6]
[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

REFERENCES

R. Sakagami, C. Watanabe, S. Aoyama, N. Matsunaga, N. Higaki, and
K. Fujimura, “The intelligent ASIMO: System overview and integration,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2002, pp. 2478-2483.
M. Fujita, “AIBO: Toward the era of digital creatures,” Int. J. Robot.
Res., vol. 20, no. 10, pp. 781-794, 2001.

H. Ishiguro, T. Ono, M. Imai, T. Maeda, T. Kanda, and R. Nakatsu,
“Robovie: An interactive humanoid robot,” Int. J. Ind. Robot, vol. 28,
no. 6, pp. 498-503, 2001.

K. Dautenhahn, M. Walters, S. Woods, K. L. Koay, C. L. Nehaniv,
A. Sisbot, R. Alami, and T. Siméon, “How may I serve you?: A robot
companion approaching a seated person in a helping context,” in Proc. Ist
ACM SIGCHI/SIGART Conf. Hum.—Robot Interact., 2006, pp. 172-179.
R. Gockley, J. Forlizzi, and R. Simmons, “Interactions with a moody
robot,” in Proc. 1st ACM SIGCHI/SIGART Conf. Hum.—Robot Interact.,
20006, pp. 186-193.

C. Breazeal, “Social interaction in HRI: The robot view,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 34, no. 2, pp. 181-186, May 2004.
A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz, and
M. Goodrich, “Common metrics for human-robot interaction,” in Proc.
1st ACM SIGCHI/SIGART Conf. Hum.—Robot Interact., 2006, pp. 33—40.
H. Ishiguro, T. Ono, M. Imai, and T. Kanda, “Development of an interactive
humanoid robot ‘Robovie’ —An interdisciplinary approach,” in Robotics
Research,R. A.Jarvis and A. Zelinsky, Eds.  Berlin, Germany: Springer,
2003, pp. 179-191.

K. Dautenhahn and I. Werry, “A quantitative technique for analysing
robot-human interactions,” in Proc. 2002 IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2002, pp. 1132-1138.

T. Kanda, T. Hirano, D. Eaton, and H. Ishiguro, “Interactive robots as
social partners and peer tutors for children: A field trial,” J. Hum. Comput.
Interact., vol. 19, no. 1-2, pp. 61-84, 2004.

R. Siegwart, K. O. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux,
X. Greppin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser, R. Philippsen,
R. Piguet, G. Ramel, G. Terrien, and N. Tomatis, “Robox at Expo.02: A
large-scale installation of personal robots,” Robot. Auton. Syst., vol. 42,
no. 3—4, pp. 203-222, 2003.

F. Tanaka, J. R. Movellan, B. Fortenberry, and K. Aisaka, “Daily HRI
evaluation at a classroom environment: Reports from dance interaction
experiments,” in Proc. 1st ACM SIGCHI/SIGART Conf. Hum.—Robot In-
teract., 2006, pp. 3-9.

J. Burke, R. Murphy, D. Riddle, and T. Fincannon, “Task performance met-
rics in human—robot interaction: Taking a systems approach,” presented at
Perform. Metrics Intell. Syst. Workshop, Gaithersburg, MD, 2004.

L. P.Noldus, R. J. Trienes, A. H. Hendriksen, H. Jansen, and R. G. Jansen,
“The Observer Video-Pro: New software for the collection, management,
and presentation of time-structured data from videotapes and digital media
files,” Behav. Res. Methods, Instrum. Comput., vol. 32, pp. 197-206, 2000.
F. Quek, Y. Shi, C. Kirbas, and S. Wu, “VisSTA: A tool for analyzing
multimodal discourse data,” presented at the 7th Int. Conf. Spoken Lang.
Process., Denver, CO, 2002.

M. Kipp and A. Anvil, “Generic annotation tool for multimodal dialogue,”
in Proc. 7th Eur. Conf. Speech Commun. Technol. (Eurospeech), 2001,
pp. 1367-1370.

T. Kanda, H. Ishiguro, M. Imai, and T. Ono, “Development and evaluation
of interactive humanoid robots,” Proc. IEEE, vol. 92, no. 11, pp. 1839-
1850, Nov. 2004.

Y. Sumi, S. Ito, T. Matsuguchi, S. Fels, and K. Mase, “Collaborative captur-
ing and interpretation of interactions,” in Proc. Pervasive 2004 Workshop
Mem. Shar. Exp., pp. 1-7.

T. Kooijmans, T. Kanda, C. Bartneck, H. Ishiguro, and N. Hagita, “In-
teraction debugging: An integral approach to analyze human—robot inter-
action,” in Proc. 1st ACM SIGCHI/SIGART Conf. Hum.—Robot Interact.,
2006, pp. 64-71.

T. Nomura, T. Tasaki, T. Kanda, M. Shiomi, H. Ishiguro, and N. Hagita,
“Questionnaire-based research on opinions of visitors for communication
robots at an exhibition in Japan,” presented at the Int. Conf. Hum.—Comput.
Interact., 2005.

P. Ekman and W. V. Friensen, Manual for the Facial Action Coding System
and Action Unit Photographs. — Palo Alto, CA: Consulting Psychologists,
1978.

S. Nabe, T. Kanda, K. Hiraki, H. Ishiguro, K. Kogure, and N. Hagita,
“Analysis of human behavior in an open field to improve communication
robots,” in Proc. 1st ACM SIGCHI/SIGART Conf. Hum.—Robot Interact.,
2006, pp. 234-241.

1011

[23] S.Nabe, T. Kanda, K. Hiraki, H. Ishiguro, and N. Hagita, “Human friend-
ship estimation model for communication robots,” presented at the 2005
IEEE-RAS Int. Conf. Humanoid Robots, 2005.

[24] J. Preece, Y. Rogers, and H. Sharp, Interaction Design: Beyond Human—
Computer Interaction. New York: Wiley, 2002, ch. 1.

[25] B. Shneiderman, Designing the User Interface: Strategies for Effec-
tive Human—Computer Interaction. — Reading, MA: Addison-Wesley
Longman, 1998.

[26] D. Norman and S. Draper, User Centered System Design; New Perspec-
tives on Human—Computer Interaction. ~Mahwah, NJ: Erlbaum, 1986.

Tijn Kooijmans received the Bachelor of Science
degree in industrial design from Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands, in
2006.

In 2005, he was a Research Intern at the Intel-
ligent Robotics and Communication Laboratories,
Advanced Telecommunications Research Institute

International, Kyoto, Japan. He, recently, cofounded
Studio Sophisti, Amsterdam, The Netherlands, where
he is engaged in research on interactive product
design. His current research interests include en-
tertainment computing and affective communication in human-computer
interaction.

Takayuki Kanda (M’03) received the B.Eng.,
M.Eng., and Ph.D. degrees in computer science from
Kyoto University, Kyoto, Japan, in 1998, 2000, and
2003, respectively.

From 2000 to 2003, he was an Intern Researcher
at the Advanced Telecommunications Research Insti-
tute International (ATR), Media Information Science
Laboratories, Kyoto. He is currently a Senior Re-
searcher at the Intelligent Robotics and Communica-
tion Laboratories, ATR, Kyoto. His current research
interests include intelligent robotics, human—robot in-
teraction, and vision-based mobile robots.

Dr. Kanda is a member of the Association for Computing Machinery, the
Robotics Society of Japan, the Information Processing Society of Japan, and
the Japanese Society for Artificial Intelligence.

Christoph Bartneck received the Diplom Industrial-
Design Informatik, in 1997, the Master of Techno-
logical Design and the Ph.D. degrees in user—System
interaction, in 2000 and 2002, respectively.

He is currently an Assistant Professor in the De-
partment of Industrial Design, Eindhoven University
of Technology, Eindhoven, The Netherlands. Prior
to this, he had been with several companies includ-
ing the Technology Center of Hannover, Germany,
\ \ LEGO, Denmark, Eagle River Interactive, USA,

Philips Research, The Netherlands, and Advanced
Telecommunications Research Institute (ATR), Japan.

He is the author or coauthor of several papers published in international jour-
nals. His current research interests include human-robot interactions, design
science, and multimedia applications.




1012

Hiroshi Ishiguro received the D.Eng. degree from
Osaka University, Osaka, Japan, in 1991.

In 1991, he joined the Department of Electrical
Engineering and Computer Science, Yamanashi Uni-
versity, Yamanashi, Japan, as a Research Assistant.
In 1992, he joined the Department of Systems En-
gineering, Osaka University, Osaka, Japan, as a Re-
search Assistant. In 1994, he was an Associate Profes-
sor in the Department of Information Science, Kyoto
University, Kyoto, Japan, where he was engaged in
research on distributed vision using omnidirectional
cameras. From 1998 to 1999, he was with the Department of Electrical and Com-
puter Engineering, University of California, San Diego, as a Visiting Scholar.
Since 1999, he has been a Visiting Researcher at the Advanced Telecommu-
nications Research Institute International (ATR), Media Information Science
Laboratories, Kyoto, Japan, where he has been engaged in research on the inter-
active humanoid robot, Robovie. In 2000, he joined the Department of Computer
and Communication Sciences, Wakayama University, Wakayama, Japan, as an
Associate Professor and became a Professor in 2001. He is currently a Profes-
sor in the Department of Adaptive Machine Systems, Osaka University, Osaka,
Japan, and a Group Leader at the Intelligent Robotics and Communication
Laboratories, ATR, Kyoto, Japan. His current research interests include omni-
directional vision, distributed vision, sensor networks, humanoid robots, and
android robots. In the last several years, he has mainly focused on the develop-
ment of humanoids and androids. The most successful robot he has made was
exhibited in Nagoya World Expo 2005, for which he is considered the father of
the world’s first android. In addition, he has developed the geminoid that is a
tele-operated android. His activities have been introduced by almost all major
TVs and newspapers in the world.

Recently, he has been selected as one of the eight scientists who change our
life by CMM.com.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 5, OCTOBER 2007

Norihiro Hagita (M’85-SM’99) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
from Keio University, Tsuruoka City, Japan, in 1976,
1978, and 1986, respectively.

During 1978-2001, he was with the Nippon Tele-
graph and Telephone Corporation (NTT). He, then,
joined the Advanced Telecommunications Research
Institute International (ATR) to establish the ATR
Media Information Science Laboratories and the ATR
Intelligent Robotics and Communication Laborato-
ries, in 2001 and 2002, respectively. His current re-
search interests include communication robots, network robot system, interac-
tion media, and pattern recognition.

Dr. Hagita is a Fellow of the Institute of Electronics, Information, and Com-
munication Engineers, Japan. He is a member of the Robotics Society of Japan,
the Information Processing Society of Japan, and The Japanese Society for Ar-
tificial Intelligence. He is a Co-Chair for the IEEE Technical Committee on
Networked Robots.



