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Abstract

The cooperation between designers, engineers and scientists in the human–computer interaction (HCI) community is often difficult,

and can only be explained by investigating the different paradigms by which they operate. This study proposes a paradigm model for

designers, engineers and scientists, using three barriers to separate the professions. We then report on an empirical study that attempted

to validate the understand/transform world barrier in the paradigm model using an online questionnaire. We conclude that the used

‘Attitude About Reality’ scale was unsuitable for measuring this barrier, whereas information about the educational background of the

participants was a good predictor for the self-reported profession (designer, engineer or scientist). Interestingly, among the three

professions, engineers appear to be the cohesive element, since they often have dual backgrounds, whereas very few participants had dual

science/design backgrounds. Engineers could, therefore, build a bridge between designers and scientists, and through their integrative

role, could guide the HCI community to realizing its full potential.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The human–computer interaction (HCI) community is
diverse. Academics and practitioners from science, engi-
neering and design contribute to its vivid development, but
communication and cooperation between the different
groups is often challenging. The Association for Comput-
ing Machinery (ACM) Computer Human Interaction
(CHI) conference, which is the largest and arguably one
of the most important conferences in the field, is organized
through the Special Interest Group Computer Human
Interaction (SIGCHI). At the 2005 SIGCHI membership
meeting, discussion of the CHI2006 conference ignited a
shouting match between academics and practitioners
(Arnowitz and Dykstra-Erickson, 2005). The intensity of
the situation could be compared to scenes from the
multiplayer video game, ‘Unreal Tournament’. Both
groups defended their access to the conference through
the different publication formats, such as paper sessions,
e front matter r 2007 Elsevier Ltd. All rights reserved.
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panels, and case studies, similar to how, ‘Unreal Tourna-
ment’ players fight for markers in the ‘domination’ game
mode. This outbreak of emotion illustrates the tension
between the different groups and it can be explained by
taking a closer look at the paradigms by which they
operate, and at the barriers that separate them. Snow
(1964) was the first to talk about such barriers, even though
he focused on only two cultures: the scientific and the
literary intellectuals. While his political ideas have become
somewhat obsolete with the decline of the USSR, his vision
for the benefits of cooperating experts still holds:

The clashing point of two subjects, two disciplines, two
cultures—of two galaxies, so far as that goes—ought to
produce creative chances. In the history of mental
activity that has been where some of the break-throughs
came. (Snow, 1964, p. 16)

After addressing these theoretical aspects, we will present
an empirical study that attempts to verify one of the
barriers between the paradigms and discuss its conse-
quences. A better understanding of the different paradigms
within the HCI community could help to prevent wasting
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any additional time and energy on shouting matches, and
could lead to a mutual beneficial cooperation.

‘Paradigm’ is defined in the Kuhnian sense as a
disciplinary matrix that is composed of those (a) shared
beliefs, (b) values, (c) models, and (d) exemplars that guide
a community of theorists and practitioners (Kuhn, 1970).
We propose three barriers that can be used to distinguish
the paradigms of the three different disciplines (see Fig. 1):
designers {D}, engineers {E} and scientists (in particular
social scientists), {S}:
(1)
exp

imp

Fig.

and
knowledge representation (explicit {S, E} versus
implicit {D});
(2)
 view on reality (understanding {S} versus transforming
reality {D, E}); and
(3)
 main focus (technology {E} versus human {D, S}).
Barrier 1: Engineers {E} and scientists {S} make their
results explicit by publishing in journals, books and
conference proceedings, or by acquiring patents. Their
body of knowledge is externalized and described outside of
the individual engineer or scientist. These two communities
revise their published results through discussion and
control tests among peers. On the other hand, de-
signers’{D} results are mainly represented by their concrete
designs. The design knowledge necessary to create these
designs lies within the individual designer, mainly as
implicit knowledge, often referred to as intuition (see
Dorfman et al., 1996). To make better designs, the designer
has to become more experienced. After gaining consider-
able experience and intuition, designers tend to reflect
(Schön, 1991) and publish their views on design (Dorst,
2003). Even so, the foundation of these reflections lies
within the individual designer’s experiences of reality.

Barrier 2: Engineers {E} and designers {D} transform
the world into preferred situations (Simon, 1996; Vincenti,
1990), while scientists {S} mainly attempt to understand
S
cie
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1. Theoretically hypothesized paradigm model of designers, engineers

scientists with the three main barriers distinguishing them.
the world through the pursuit of knowledge covering
general truths or the operation of general laws (definition
taken from Encyclopaedia Britannica). This difference
between {E, D} and {S} is of particular interest to our
investigation since a preferred state could also be the state
of knowing and since understanding also requires the use
of synthesis. The following model illustrates the relation-
ship between ‘abstracting’ from reality (for understanding)
and ‘concretization’ (for transforming reality; see Fig. 2).

Barrier 3: Scientists {S} and designers {D} are pre-
dominantly interested in humans in their role as possible
users. Designers are interested in human values, which they
transform into requirements and eventually solutions.
Scientists in the HCI community are typically associated
with the social or cognitive sciences. They are interested in
the users’ abilities and behaviors such as perception,
cognition and action. Engineers {E} are mainly interested
in technology, which includes software for interactive
systems. They investigate the structure and operational
principles of these technical systems to solve certain
problems.
Given a reality at time t1, science in the positivistic

paradigm observes and analyzes particular phenomena in
this reality, makes proper abstractions, and tries to predict
similar phenomena for reality at time t2. To preserve a
stable reality [reality (t1Þ ¼ reality (t2Þ], science in the
positivistic paradigm has to operate under the essential
assumption that model and theory are not a part of reality
[(model, theory) e {reality}]. The theory (‘res cogitans’)
itself is clearly separated from and does not influence the
described phenomena (‘res extensa’; see Descartes, 1644
and more recently Dreyfus, 1979, Chapter 7, and Black-
more, 1999, Chapter 17).
For example, the theory of gravity explains and predicts

certain phenomena, such as falling apples, but it neither
influences nor changes the phenomenon of ‘gravity’. In this
sense, models and theories of science in our modern
positivistic paradigm are not part of the investigated and
described reality; but they are apart from this reality. For
this concept of reality we will use the lowercase style. We
will use the term REALITY in the uppercase style for the
reality at t1 reality at t2
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Fig. 2. Progress model (adapted from Rauterberg, 2006). Scientists create

models and theories of reality through abstraction with the aim of

predicting reality. Designers and engineers concretize the abstract models

and theories into artifacts that improve reality.
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broader meaning of the term as the union of model, theory
and reality. The underlying mechanism to guarantee the
fulfillment of the assumption [reality (t1Þ ¼ reality (t2Þ] is
reductionism via abstraction. Any differences in empirical
measurements and observations between t1 and t2; such as
noise, are interpreted as just accidental factors, which do
not contradict the theory and/or the underlying principle.
Armed only with knowledge based on theories developed
under the positivistic paradigm, the design of a concrete
artifact is impossible, because the knowledge in these
theories is purified from the concrete and changing
contextual factors between reality at t1 and at t2. This lack
of specific knowledge for any concretization, such as craft
skills provided via experiences and intuition, gives design
and engineering disciplines their right to exist. Dreyfus and
Dreyfus (1992) and Dreyfus et al. (1986), stimulated a very
important discussion about the importance and boundaries
of and necessity for intuitive expertise, complementary to
artificial expert systems which just follow explicitly given
rules.

Therefore, activities governed by a constructivistic

paradigm claim to influence the reality and to change this
reality via the developed artifacts [reality (t1Þareality ðt2Þ],
and in fact they do! The design and engineering disciplines
develop knowledge to make concretization possible. This
knowledge realized in the form of models and artifacts can
be interpreted as part of the REALITY, and not apart
from it [(model, artifact) 2 frealityg]. But how can design
and engineering disciplines guarantee a stable reality? If
models and artifacts are seen as part of this REALITY,
such as a subset of this REALITY under consideration,
then any action, which changes this subset, changes the
whole REALITY set as well. So, constructive disciplines
such as design and engineering cannot guarantee a stable
reality, and indeed they do not want to (Klemm, 1964).

Scientists, with their logical positivistic paradigm on the
one side, and engineers and designers with their construc-
tivistic paradigm on the other side, appear to have different
attitudes toward REALITY. Our study attempted to find
empirical proof of this difference. We hypothesized that the
Attitude About Reality (AAR) scale (Unger et al., 1986)
might be useful for measuring this difference. This bi-polar
scale ranges from ‘logical positivism’ on the one side to
‘social constructivism’ on the other side. Unger et al. (1986)
defines logical positivism as follows:

Reality is relatively fixed and objectively accessible.
Logical positivism also states that meaning is opera-
tionally defined and therefore replicable across social
contexts, and that reality will be increasingly uncovered
by the use of more and more refined measurement
techniques.

Social constructivism is defined by Unger et al. (1986) as
follows:

Meaning is defined by our linguistic and conceptual
categories; these categories are the product of social-
consensus process that is neither predictable nor
progressive in nature. This view ‘invites one to challenge
the objective basis of conventional knowledge’ (Gergen,
1985) and to focus instead upon processes of negotiated
understanding as the critical events through which to
analyze reality, as we know it. The degree to which a
particular form of understanding prevails or is sustained
across time is not seen as fundamentally dependent
upon its empirical validity.

If scientists operate under the logical positivistic paradigm,
then they should score higher on the AAR scale compared
to designers and engineers that work under the constructi-
vistic paradigm. Our main research question is whether the
different paradigms of designers, engineers and scientists
do indeed lead to different views on reality as measured
through the AAR scale.
2. Method

We conducted a study in which the participant’s self-
reported profession, their educational background and the
AAR score was recorded. The data were gathered through
an online questionnaire. Invitations to participate in the
study were posted on several HCI mailing lists, including
the ACM’s CHI-Announcements list, British HCI Group’s
BCS-HCI news list and the German GI-Fachgruppe
Software-Ergonomie SW-Ergo list. While online surveys
have some methodological difficulties (Kaye and Johnson,
1999), such as the submission of duplicates, it still offers the
broadest access to a given community. Our study focuses
on the HCI community and not on the general public.
Therefore sampling problems apply only to a lesser degree.
It can be assumed that most HCI community members
have access to a computer and the Internet. We checked the
submission dates and times in combination with the IP
addresses of the computer from which the survey was
completed, to prevent duplicate submissions.
2.1. Measurements

First, the participants were asked to declare in what
academic fields they had a bachelor’s, master’s or doctoral
degree. The participants could select multiple answers, even
within the different educational levels. They could also
decide not to give an answer for a certain educational level.
If, for example, the participant did not have a Ph.D. degree
then they would not check any of the offered choices for
the Ph.D. degree.
Given the diversity of educational programs it appeared

to be unwise to include an open question for the academic
fields. The option ‘Other’ was included to identify
participants that diverged from the given set of academic
fields.
The scores on the educational background were trans-

formed in the following manner. We categorized each
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education field as either design, engineering or science
according to the following schema:

Design: Architecture, Fashion Design, Industrial Design
(Product, Packaging, etc.), Visual Design (Graphic, Inter-
action, Information, etc).

Engineering: Bioengineering/Biomedical Engineering,
Civil Engineering, Electrical Engineering, Environmental
Engineering, Material Science and Engineering, Mechan-
ical Engineering, Software Engineering.

Science: Biology, Chemistry, Computer Sciences, Geol-
ogy, History, Mathematics, Medicine, Philosophy, Physics,
Psychology, and Sociology.

The schema might have a certain ambiguity. For
example, it can be argued if Mathematics is really a science
(Jaffe, 1997). Furthermore, its relationship to Computer
Science and Software Engineering is not completely clear.
However, it appears to have been generally categorized as a
science by encyclopedias such as ‘Encyclopedia Britannica’.

Afterwards, the questionnaire inquired how participants
would categorize their main profession as it is now:
designer, engineer or scientist. This self-reported categor-
ization was a forced choice selection question and they
were not allowed to make multiple choices. Finally, the
participants had to fill in the AAR questionnaire (Unger
et al., 1986) which consisted of 40 questions. Each question
had to be answered using a sevenpoint Likert scale (see
Fig. 3). The answers of all inverse items were transformed
Fig. 3. Example screenshot of the questionnaire.
before undergoing the analysis. The AAR score is the sum
of all items ranging from a minimum of 40 to a maximum
of 280 points.
We then estimated how much time each participant

spent in design (dÞ, engineering (eÞ, and science (sÞ. Since
the education systems vary among different countries we
assumed that on average a bachelor’s degree requires four
years, a master’s requires two years, and a Ph.D. requires
four years of education. If a person had a bachelor’s in
mechanical engineering (eÞ and a master’s in industrial
design (dÞ then the person would receive a score of d ¼ 2
and e ¼ 4. In addition, we noted the highest educational
level (eduLevel) of the participant (1 ¼ bachelor’ s, 2 ¼
master’ s and 3 ¼ Ph:D.). In the above example, the
highest level would have been the master’s degree. We
then calculated the specialization of the participant
(propEduInProfession). The number of years of education
the participant spent on his/her profession were divided by
the total years of education (d þ eþ sÞ. If the participant in
the previous example considers themselves to be a designer
then their score would be propEduInProfession ¼ 0:33 (2/6)
and if they considered themselves to be an engineer then
their score would be propEduInProfession ¼ 0:66 (4/6).
To summarize, we recorded the participants’ age, gender,

profession, highest education degree (eduLevel), and AAR
score:Based on an estimation of the participants’ education
years in design (dÞ, engineering (eÞ, and science (sÞ, we
calculated the participants’ self-reported specialization
(propEduInProfession).

2.2. Participants

Given the international scope of the various mailing lists
to which the invitations were sent, it can be assumed that
the participants originated from several different countries.
Of the 128 people that filled in the questionnaire, a total of
114 were used for the analysis. Participants who indicated
‘Other’ for education were excluded from the analysis
(N ¼ 12), since no further information on them was
available. The remaining 114 participants identified them-
selves as designers (N ¼ 26), engineers (N ¼ 33) and
scientists (N ¼ 55). Table 1 shows the gender and profes-
sion frequencies. More men (N ¼ 81) than women
(N ¼ 33) participated in the study and most women were
scientists. A w2 test revealed no significant correlation
between profession and gender (w2 ¼ 1:850; df ¼ 2;
p ¼ 0:397). Table 2 summarizes the education levels per
Table 1

Frequencies of gender and profession

Self-reported profession Total

Gender Designer Engineer Scientist

Female 7 7 19 33

Male 19 26 36 81

Total 26 33 55 114
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Table 2

Frequencies of the education levels per profession

Self-reported profession Total

Education level Designer Engineer Scientist

Bachelor 5 9 6 20

Master 18 16 23 57

Ph.D. 3 8 26 37

Total 26 33 55 114

Table 3

Pooled within groups correlation between the discriminating variables (d,

e, s, eduLevel, propEduInProfession, gender) and the discriminant

functions

Function

1 2

s 0.397a 0.018

eduLevel 0.242a 0.180

d �0.498 0.755a

propEduInProfession 0.513 0.565a

e 0.006 �0.542a

Gender �0.075 �0.160a

aLargest absolute correlation between each variable and any discrimi-

nant function.

Table 4

Predicted membership accuracy of the self-reported profession category

based on the variables d; e; s; eduLevel; propEduInProfession, and gender

Profession Predicted group membership Total

Designer Engineer Scientist

Original Count Designer 16 10 0 26

Engineer 1 28 4 33

Scientist 1 5 49 55

Cross-validated Count Designer 16 10 0 26

Engineer 1 23 9 33

Scientist 1 5 49 55
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self-reported profession. Most participants had at least a
master’s degree ðN ¼ 57Þ and the scientists in particular
tended to have a Ph.D. degree ðN ¼ 26Þ. A Chi-Square test
revealed that there was a significant correlation
(w2 ¼ 13:788; df ¼ 4; p ¼ 0:008) between profession and
eduLevel.

3. Results

A reliability analysis for the 40 AAR items for all 114
participants resulted in a Cronbach’s alpha of 0.614, which
gives us sufficient confidence in the reliability of this
questionnaire. An analysis of variance (ANOVA) was
conducted with self-reported profession as the independent
variable and the total AAR score as the dependent
variable. The Levene’s Test for equality of variance was
not significant ðp ¼ 0:278Þ and therefore the variance can
be assumed to be homogeneous. Profession does not have a
significant influence on the total AAR (F ð2; 111Þ ¼ 0:046,
p ¼ 0:955). The scores for designer (168.15), engineer
(168.33) and scientist (167.42) were only slightly above
the middle value of the AAR (160). Next, we conducted a
factor analysis of the 40 items on the AAR scale using a
varimax rotation. It revealed 13 factors with eigenvalues
greater than 1 after 25 iterations. The interpretation of
these 13 factors was not the main aim of our study.

A discriminant analysis was performed to determine to
what degree the variables measuring the participants’
educational background (d, e, s, eduLevel and propEduIn-

Profession) and gender, predicts the participants’ self-
reported profession. Table 3 shows the pooled within
groups correlation between the variables and the two
discriminant functions. The variables s and eduLevel

largely correlate with the first function while the remaining
variables correlate with the second function. The variable
propEduInProfession correlates with both functions, which
comes as no surprise, since the proportion spent within a
certain profession is independent of the professions
themselves. Function 1 may be labeled ‘abstract orienta-
tion’ and function 2 ‘concrete orientation’. This interpreta-
tion would be congruent with Fig. 2, which illustrates the
role of abstracting and concretizing in the progress of
science.

The sample data were randomly split into two groups.
The first group was used for the creation of the
discriminant model (original group) and the second group
was used to validate the model (cross-validated group). In
total 81.6% of the original cases and 77.2% of the cross-
validated cases were correctly classified by the discriminant
model (see Table 4). Interestingly, designers are sometimes
incorrectly classified as engineers, and engineers are some-
times wrongly classified as scientists. Scientists, however,
are rarely classified as anything but scientists (see Table 4).
A second discriminant analysis was performed to

investigate the predictive power of age, gender, educational
background (d,e,s,eduLevel, propEduInProfession) and
AAR on the participants’ profession (see Table 5).
The sample data were randomly split into two

groups. The first group was used for the creation of the
discriminant model (original group) and the second group
was used to validate the model (cross-validated group). The
79.8% of original cases and 74.6% of the cross-validated
cases were correctly classified by the discriminant model.
The classification accuracy did not improve (compare
Tables 4 and 6). Including AAR as a predictor did not
improve the prediction accuracy.

4. Discussion and conclusion

Among our three chosen disciplines the differences in
AAR are small and insignificant. The AAR scale appears
to be ineffective in detecting the differences between
designers, engineers and scientists. The results of the factor
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Table 5

Pooled within groups correlation between the discriminating variables

(age, gender, educational background [d,e,s,eduLevel and propEduInPro-

fession] and AAR) and the discriminant functions

Function

1 2

propEduInProfession 0.505a 0.472

s 0.381a �0.029

eduLevel 0.237a 0.141

d �0.459 0.767a

e �0.007 �0.510a

Age �0.178 �0.227a

Gender �0.076 �0.141a

AAR �0.020 �0.023a

aLargest absolute correlation between each variable and any discrimi-

nant function.

Table 6

Predicted membership accuracy of the self-reported profession category

based on the variables d, e, s, eduLevel, propEduInProfession, gender and

AAR

Profession Predicted group membership Total

Designer Engineer Scientist

Original Count Designer 16 10 0 26

Engineer 1 28 4 33

Scientist 1 7 47 55

Cross-validated Count Designer 16 10 0 26

Engineer 3 22 8 33

Scientist 1 7 47 55

designer engineer scientist

Fig. 4. Empirically improved paradigm model of designers, engineers and

scientists.
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analysis strengthen this impression. Jackson and Jeffers
(1989) identified only three factors of the AAR scale and
labeled them, ‘societal determinism’, ‘individual determin-
ism’, and, ‘variable determinism’. In contrast, our factor
analysis revealed 13 different factors. This difference might
be explained by the diversity of the participants in our
study. Both, Jackson and Jeffers (1989) and Unger et al.
(1986), used a homogenous populations (e.g., under-
graduate psychology students), whereas our study included
participants from diverse backgrounds and ages. The AAR
scale appears to be ineffective for heterogenous groups,
which is unfortunate, since its potential value lies in
explaining differences between conflicting groups. In
contrast, the educational background of the participants
has a much higher prediction accuracy of 77–82% for the
participants’ self-reported profession.

We therefore focus our further discussion on the
educational backgrounds of the designers, engineers and
scientists. The term ‘scientist’ is somewhat ambiguous.
People may consider themselves to be scientists because
they work for an academic institute or because they have a
Ph.D. degree, or because they conduct scientific studies. An
engineer working for a university might consider himself a
scientist even if he only works on engineering tasks. Most
medical doctors have a Ph.D. degree but work as general
practitioners. However, to have a successful university/
academic career, it is generally necessary to have a Ph.D.
degree, which understandably requires time. Our data show
that 70% of the participants that consider themselves to be
scientists have a Ph.D. degree and as a result, have spent
more time on their education. Furthermore, propEduIn-

Profession is the best predictor for scientists when all
variables are considered (see Table 5). They tend to stay
within the same scientific fields while engineers and
designers change their fields more often. In general, the
education history of a person predicts in over 80% of the
cases their self-reported profession correctly. This result
indicates the importance of the education for the develop-
ment of professions and thereby the differentiations of the
disciplines within the HCI community. Perhaps an over-
haul of our education systems, to include more diverse
courses, is required in order to obtain increased coopera-
tion between disciplines. Designers could, for example,
avail of basic courses in experimental methodology and
statistics, while scientists could be granted access to
interface design courses.
It also becomes apparent that engineers are the binding

element between designers and scientists. Designers and
scientists sometimes have an engineering education and
engineers sometimes have a design or science education. In
contrast, scientists and designers rarely have a design or
science education, respectively. The intersection between
science and design as shown in Fig. 1 appears to be small.
A more realistic model of the people within the HCI
community is shown in Fig. 4 in which the three disciplines
are aligned with engineering in the centre, flanked on either
side by science and design.
Engineering shares much of its knowledge with science

(Vincenti, 1990) and it can be argued that on the very
grounds on which the claim of superiority is made for
scientific knowledge, engineering knowledge is shown to be
far more reliable, secure and trustworthy than scientific
knowledge (Pitt, 2001). Engineers require such knowledge
to build artifacts on which our lives depend, e.g., cars and
houses must be safe and engineers have no margin for error
when evaluating the strengths of materials.
Since engineers are more likely to have education in

multiple fields than scientists or designers, they tend to
acquire the knowledge and skills of the other professions.
This enables them to speak and empathize with the
other fields. They therefore could bridge the gap between
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designers and scientists and guide the HCI community to
its full potential. To do so they need to be open-minded
and collaborate with both the disciplines. In general,
people with educational backgrounds in at least two
disciplines might play the key role.

5. Future work

This study tried to find empirical proof of the AAR
barrier between scientists on the one side and engineers and
designers on the other side (see Fig. 1) by utilizing the AAR
questionnaire. Unfortunately, we found that the AAR
questionnaire was unsuitable for this task. To further
empirically evaluate our model of the HCI community, it
would be necessary to systematically test all barriers. In
addition, one could consider a variation of the methodol-
ogy in which the participants would be allowed to give
multiple-choice answers for the self-reported profession.
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