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Abstract—Nonverbal behaviors serve as a rich source of
information in inter human communication. In particular, motion
cues can reveal details on a person’s current physical and mental
state. Research has shown, that people do not only interpret
motion cues of humans in these terms, but also the motion
of animals and inanimate devices such as robots. In order to
successfully integrate mobile robots in domestic environments,
designers have therefore to take into account how the device will
be perceived by the user.

In this study we analyzed the relationship between motion
characteristics of a robot and perceived affect. Based on a
literature study we selected two motion characteristics, namely
acceleration and curvature, which appear to be most influential
for how motion is perceived. We systematically varied these
motion parameters and recorded participants interpretations in
terms of affective content. Our results suggest a strong relation
between motion parameters and attribution of affect, while the
type of embodiment had no effect. Furthermore, we found that
the level of acceleration can be used to predict perceived arousal
and that valence information is at least partly encoded in an
interaction between acceleration and curvature. These findings
are important for the design of behaviors for future autonomous
household robots.

Index Terms—Expressive robotic behavior, nonverbal commu-
nication, affective communication

I. INTRODUCTION

The development of autonomous household robots raises
new design issues. Multiple studies have stressed the impact of
a robotic device on the social life [31], [10], [30]. These results
also suggest that the success of a robotic platform depends
on more than the mere task performance. For example, a
robot that is optimized for speed and cleaning performance
with rapid movements can easily perceived as aggressive or
nervous. In order to successfully integrate robots in close
social proximity of our every day life, we have to understand
how these machines and their behaviors are perceived and
interpreted by their users.

In this study we focus on the problem of designing
expressive behavior for robots, in particular on designing
expressive movements. Non-verbal communication through
gestures plays an important role for human communication.
For example Heider and Simmel have demonstrated already
in 1944 that people are naturally biased to interpret motion
patterns in terms of social or emotional terms [13].

Designing expressive movements for robots aims at using
motion as modality to convey information, e.g., about the
status, and to improve the overall perception of the device.
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It has been shown that already subtle differences in the
movement trajectories can a have a significant effect on how
the robot is perceived [23], [24]. For designing expressive
and communicative behaviors it is important to know which
features cause the interpretation of intentions and emotions
[11].

Up to now, the focus of research has mainly been on identi-
fying the motion features that cause the attribution of animacy
[29], [3]. In this study we investigate the relation between
motion features and perceived emotion, i.e., the emotion that
people attribute to the motion pattern when observing a robot.
In particular, we derive from literature two motion features,
namely acceleration and curvature, which appear to be relevant
for the perception of emotion and vary them systematically.
The hypothesis is that varying these motion features has
also an effect of the perceived emotion. In particular, we
systematically analyze this relationship by constructing three
levels for both, curvature and acceleration. Furthermore, we
compare two different embodiments with different physical
setups.

In the following, we first introduce the emotional model
and affect assessment tools that have been adopted for this
study, before we later discuss the implementation of the motion
characteristics.

II. PERCEPTION OF EMOTION

Several models have been developed for explaining the
ability of people to perceive emotions based on observations.
An evolutionary model suggests that the ability has evolved
because it has been an advantage to correctly recognize the
intentions of a potential predator. For example Blythe et al.
give the example of observing a mountain lion, i.e., judging if
the lion is aggressive and searching for prey, mating or relaxed
wandering [3].

Another model for interpretation of motion patterns is that
social reasoning helps to make sense of an observation. If
objects change direction without an obvious reason, people
tend to use their social reasoning to explain the phenomenon,
i.e., by internal drives and needs including emotional states
[16].

A. Emotional model

A number of different psychological models for the cogni-
tive structure of emotions have been proposed. An extensive
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discussions on emotional models and the experience of emo-
tions can be found in [20], [1], [6]. In general, two models
have found wide acceptance and are supported by empirical
evidence.

The first describes emotions as a combination of basic
emotions. Ekman found that facial expressions for the six
emotions of anger, surprise, disgust, happy, sad and fear
are universally recognized [9]. Each of these basic emotions
describes an unipolar dimension containing the activation of
a particular basic emotion. However, it is not clear which
emotions make the basic set of which all other emotions can
be constructed [14].

The second model represents experiences of emotions as
points in a continuous two dimensional space. Russell found
that most of the variance of emotional perception can be
accounted for in a two dimensional space with the axis of
arousal and valance. This model is referred to as circumplex
model of affect [26]. The results of Russell have been repeated
in several other studies that found the same axis or rotational
variants and resulted in the development of multiple scales to
measure different degrees of affect in this two dimensional
space [7], [22]. Some studies have extended the model, for
example by a third dimension representing dominance [17].

B. Assessing affect

For our research, we adopted a similar approach as Pollick
et al. [25] and Lee et al. [19] and measured emotion according
to a two dimensional parameterized model of emotion. Pollick
et al. found that emotions perceived from arm motion can
be clustered in a space with the two main axis of valence
and arousal similar to Russell’s circumplex model of affect
[25]. We also followed Pollick’s argumentation that similar
measurements can be used both for measuring one’s own
experiences of emotion as well as assessing the emotional
state of someone else. An overview of assessment methods
for affect can be found in [14].

We selected the PANAS [33] and the “Self assessment
manikins” (SAM) [17], [4] scales to fit best our needs. First
of all, plenty of studies have been reported using the PANAS
and the results showed high validity and reliability (Cronbach’s
o = 0.89) for a general population [7]. The scale and rating
instructions are freely available and are quick to administer.
Furthermore, the PANAS has also been administered to rate
the affective state of other persons, not only to assess the
emotional experiences of oneself. For example, it has been
successfully administered to mothers to assess affect of their
children [8]. The PANAS scale measures a dimensional model
of emotions, which allows to parameterize an emotional state
by a coordinate in a two dimensional space. It measures
positive affect and negative affect which consist of 10 items
for every of the two constructs (see Fig 1).

The SAM scale assesses three independent dimensions
pleasure, arousal and dominance (PAD) [21]. Both the PANAS
and the PAD models are rotational variants in the same two
dimensional space [18]. The advantage of the SAM scale is
that it is fast to administer and are not subject to language

54

Neuroticism A S\ Exraversion
% 3 Q¥
% 9. 3 3
95 ¥, g vg&,{\o&
(SN
T &
N NS
G > @
R S
Anxiety “ Satisfaction
Depression h Pleasure Happiness
0 AN
N AN
P %%
}(‘,\. (,‘LA
\Oérb %60
S v 4 Constructive

Introversion thinking

Fig. 1: Simplified version of a two dimensional space of
affect(derived from Larsen and Diener [18])

misinterpretations [4]. We expected that an iconic represen-
tation of emotions might be easier to understand and apply
to inanimate beings such as a robot. However, to the authors
knowledge, the SAM have not generally been administered to
assess affective states of others. For our case this is essential,
because we are interested in what affective state participants
perceive in the robot motion.

III. SELECTION OF MOTION FEATURES

In literature, several studies have been published that an-
alyze the perception of particular motion characteristics. In
order to determine which motion features are most influential
for the perception of emotion, we analyzed the main effects of
several studies that investigated the perception of motion. For
example, Tremoulet and Feldman have shown that already two
cues are enough to give an impression of animacy: 1) change
in speed and 2) change in direction [32]. In the following we
give an overview of the field.

Camurri et al. aimed to automate the recognition of emo-
tional content of expressive gestures made by dance per-
formances [5]. They asked actors to perform a dance with
four different emotional expressions: anger, fear, grief and
joy and computed motion features derived from Laban Move-
ment Analysis: overall duration, contraction index, quantity
of motion, and motion fluency. They found main effects for
example for duration and quantity of motion which are related
to changes in speed and trajectory.

Similarly, Gaur et al. aimed at automating the recognition of
animate and inanimate characteristics solely based on motion
features [11]. They analyzed motion features, including mean
distance, mean rotation, range of distance, range of rotation,
variance of distance, variance of rotation, spline coefficients
representing the sharpness, and an energy metric that calcu-
lates the energy that the objects gains to give the impression
of being animated. They found that a combination of spline
coefficients, change in velocity and direction together with
the energy feature hold the most information for classifying
a motion as either animate or inanimate. The absolute values
seemed to be of less importance.



Saerbeck, M., & Bartneck, C. (2010). Attribution of affect to robot motion. Proceedings of the 5th ACM/IEEE International Conference on
Human-Robot Interaction (HRI2010), Osaka pp. 53-60. | DOI: 10.1145/1734454.1734473

Bethel and Murphy reviewed different methods for affective
expressions, among others using motion [2]. They found that
depression is connected with slow and hesitating movements
while elation is connected to fast expansive motions.

Blythe et al. analyzed motion patterns for basic behavior
patterns of pursue, evade, fight, court, be courted and play
[3]. An interesting result was that participants were even able
to judge the behavior when the target of the motion was taken
away. These results stress that the informational content of
motion is independent from the context. Furthermore, they
analyzing the relevance of motion features for classification in
terms of behavior and found the following order of importance
of the features: (1) absolute velocity, (2) relative angle, (3)
relative velocity, (4) relative heading, (5) relative vorticity, (6)
absolute vorticity and (7) relative distance.

Pollick et al. calculated from a point light display of human
body motion [25] the following movement features: (1) wrist
kinematics (2) average velocity, (3) peak velocity, (4) peak
acceleration, (5) peak deceleration and (6) jerk index. They
found that kinematic features correlated with the activation
dimension of arousal and valance. Energetic motions were
positively correlated with shorter duration, acceleration, jerk,
greater magnitudes of average velocity, and peak velocity.

Lee et al. presented a relational framework between motion
features and emotions [19] for which they used a two dimen-
sional emotional model with the axis of valance and arousal.
They varied the degree smoothness, speed and openness and
found a positive correlation between velocity and activation
axis and a positive correlation between pleasantness and
smoothness, but they could not find an effect for openness.

From the above results it appears that especially relative
motion features hold important information for categorizing a
motion trajectory. In all studies changes of speed and changes
of direction had an effect, while the absolute values seemed
to be of less importance. Only the study of Blythe et al.
found absolute velocity to carry most information, but they
also found that the absolute ordering of the features was of less
importance. The study of Gaur et al. found the absolute values
explicitly of less importance [11]. Based on these results
we chose to focus our study on the motion parameters of
acceleration (representing differences in speed) and curvature
(representing differences in direction).

Furthermore, we expect these parameters to influence how
the motion is perceived in emotional terms. High energy
motions that often change direction or velocity should be
interpreted as more active. However, the existing studies re-
main inconclusive how these parameters influence the valence
dimension. Some studies reported that the smoothness has an
effect on the valence, but the type of the relationship remains
unclear.

In the following, we describe our experimental setup in
which we systematically vary the two motion parameters
acceleration and curvature in the behavior of a robotic em-
bodiment.
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Fig. 2: Experimental setup of the room indicating the move-
ment of Roomba, starting from position S. In the Roomba
condition participants were placed in position A and in the
iCat condition in position B. The experimenter was placed at
position E.

IV. MEASURING PERCEPTION OF MOTION

In order to display a robotic motion characteristic, the move-
ments need to be implemented on a robotic embodiment. The
concrete display of a motion feature naturally also depends on
the concrete embodiment.

Depending on the physical setup of a robotic embodiment,
two different types of motion are possible, that we refer to as
external motion and internal motion. With external motion we
refer to motion ‘external’ to the embodiment, i.e., movement of
an object itself a defined space. With internal motion we refer
to posture changes internal to the embodiment, i.e., movement
of the limbs.

Based on these observations, we chose for our study two
embodiments with two different types of motion, namely
the iCat robot for implementing the internal motion and the
Roomba robot for implementing the external motion. These
two platforms are introduced in the following.

A. Robotic embodiments

The iCat robot is a robotic research platform developed by
Philips Research for human machine interactions. The robot is
depicted in Fig. 3. The iCat robot has the shape of a cat and is
approximately 40cm tall. It has an animated mechanical face
with 13 degrees of freedom to express basic emotions, such as
happiness, sadness or disgust. For our experiment we focused
on the pan and tilt of the head. The expression of the face
was kept neutral in order to avoid an interpretation of iCat
based on the symbolic expression of the face rather than the
impression of the movement patterns.

The Roomba robot is a commercially available vacuum
cleaning robot developed by iRobot. The robot is depicted in
Fig. 4. Roomba has a circular shape with a radius of approx-
imately 15cm. It has a differential drive system, consisting of
two velocity controlled wheels that can be controlled via a
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Fig. 3: Sample interaction in the iCat condition.

serial interface. We tested and evaluated the drive accuracy of
the robot as described in [27].

Even though both embodiments are very different from each
other, both have demonstrated their ability to elicit emotions
[10], [12]. People are able to recognize motion features of
very abstract shapes [13].

B. Motion pattern generation

For generating the motion patterns, we used graphical ani-
mation tools as described in [28]. They generate animations,
which is a sequence of actions that can be executed by the
robot. These tools furthermore allow to parameterize a motion
trajectory and systematically vary the behavior of the robots.

Three different values for curvature and acceleration were
created for both embodiments, resulting in 9 movements for
every embodiment. Both robots were assigned a simple task.
For Roomba, we defined a circular trajectory through the
room as depicted in Fig. 2 so that the robot would start
from a defined home position S, drives through the room
on the indicated trajectory and returns to the home position
afterwards. On this route, Roomba passes the participant at
position A. An example picture with Roomba is depicted in
Fig. 4.

In the iCat condition we placed two objects in front of
iCat and defined an animation to look at both objects. The
robot started from a central position, looked first at the left
object then at the right object and finally returned to a central
position. The participants were seated with an approximate
distance of 80 cm to iCat, in Fig. 2 marked as position B. A
sample picture from the iCat condition is shown in Fig. 3.

We calculated the values for acceleration and curvature
separately for both embodiments as follows. We first ap-
proximated the first and second derivatives based on the
motion trajectories from the editors. In the current version, the
iCat robot updates the motor positions 10 times per second.
Therefore, the velocity v of an actuator can be approximated
by the difference in position of two consecutive frames and in
an analogous manner the acceleration a can be approximated
as the difference of two consecutive velocities:
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Fig. 4: Sample interaction in the Roomba condition.

For an animation the average acceleration a was calculated
over the number of frames F as:

1 F
a:fEM 3)

In the same manner also the average velocity of the Roomba
robot was calculated, but with the difference that the velocity
did not have to be approximated because the serial interface
directly accepts a target velocity as a parameter, which was
used for the calculation.

As a measurement for curvature we calculated the extrinsic
curvature x. If the radius is known, the curvature can directly
be calculated by:

K== @

For the Roomba robot we could directly apply this definition,
because it always moves in circular segments. In order to
calculate the curvature of the movements of iCat, we analyzed
the path in space of the center of iCat’s face as it moved the
head to accomplish the task. The center is given by the tip of
the nose and moves on an ellipsoid surface, which is defined by
the radius for the pan and tilt axes. The shape of the ellipsoid
is parameterized by the equatorial radii a, b and ¢ along the
axes of the coordinate system
2 2 2
St 5=l ®)
The parameters are given by the iCat embodiment as a = b =
10.5cm and ¢ = 12.5cm, assuming that z is the vertical axis
and the x-y plane is parallel to the table. The control signal
of the motors can be directly converted to viewing angles.
The pan angle @ is controlled by the value that is sent to the
actuator labeled “body” and the tilt angle © is controlled by the
actuator labeled “neck”. The maximum viewing angles for ®
and O are in the range of —45 < & <45 and —25 < O < 25,
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Robot mean acceleration mean curvature

Condition low medium high low medium high
iCat 0.33 0.81 1.19 0.46 0.56 1.41
Roomba ‘ 0.18 0.60 1.10 0.85 1.50  2.20

TABLE I: Values of acceleration and curvature for the three
levels low, medium and high.

respectively. With these parameters the three dimensional path
is parameterized by

x = asin (P)cos (O) (6)
y = bsin(P)sin(O) (7
z = ccos (D) 8)

The curvature of a parameterized curve in a three dimensional
space is given by:

_ @ A (@ P 4 2 - (B g+ 222
k= (72 + 42 + 22)3 ®)

The values for the curvature and acceleration are summarized
in Table I.

C. Participants

We recruited participants through the J. F. Schouten School
participant database [15]. The database contains people of
all age groups who are interested to participate in scientific
research experiments. Healthy adult participants, aged 20-
45 years, were randomly selected and recruited from this
database. All participants were reimbursed for their partic-
ipation in the experiment. In total, we collected collected
complete data from 18 participants, 10 male and 8 female
for our analysis.

D. Procedure

The experiment took approximately 45 min and consisted
of three parts: (1) Intake (5 min), (2) Rating of conditions (35
min) and (3) Final interview (5min). A session started with
a short introduction after which the participants were given
an informed consent form to sign before they observed the
robots.

In total 18 conditions were shown to the participants. We
followed a repeated measure design with three independent
variables: acceleration (three levels), curvature (three levels)
and embodiment (two levels). This setup resulted in 3x3x2
independent variables and 5 measures of emotions as depen-
dent variables, i.e., two from the PANAS (positive affect and
negative affect) and three from the SAM (arousal, valance and
dominance).

The participants were randomly assigned to see either the
iCat or the Roomba embodiment first. Every robot performed
nine animations, one for every combination of acceleration and
curvature for the values of low, medium and high, respectively.
The order of the nine animations was randomized. After
every behavior the participants filled in the PANAS and SAM
questionnaires. Most of the participants gave spontaneous
comments in a think-out-loud fashion, which were also noted
down. After the completion of all conditions, a semi-structured
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acc. cur. valence arousal  dominance positive negative
affect affect

low low 4.89/0.32  6.00/0.20 4.33/0.18  21.00/1.10  15.50/1.00
low med. | 4.11/029  6.06/0.30 4.11/0.24  20.61/1.35  14.50/0.85
low high 5.44/0.28  5.17/0.32 3.94/0.24  21.56/1.57  17.72/0.89
med.  low 5.67/0.31  5.28/0.29 3.78/0.28  20.78/1.26  17.06/0.85
med. med. | 4.56/0.27  5.17/0.22 4.00/0.34  21.00/1.61 14.56/0.83
med.  high 3.89/0.25  4.33/0.23 4.11/027  24.06/1.89  16.00/1.15
high low 5.39/0.37  3.11/0.20 5.22/0.29  24.44/1.57  19.50/1.14
high med. | 3.67/026  3.61/0.28 5.11/0.35  26.56/1.54  16.78/1.04
high high 5.00/0.28  2.67/0.29 4.11/0.14  27.11/1.37  20.28/1.51
Average 4.73/0.29  4.60/0.26 4.30/0.26  23.01/1.47  16.88/1.03

(a) Mean and standard deviation for Roomba (N=18)

acc. cur. valence arousal ~ dominance positive negative
affect affect

low low 5.39/0.29  6.39/0.27 3.89/0.18  16.11/1.26  16.67/1.13
low med. | 3.83/0.34  5.72/0.21 4.17/0.19  22.89/1.18  15.17/0.70
low high 5.06/0.30  5.61/0.29 3.94/0.25  18.61/2.03  14.89/1.08
med.  low 5.17/0.22  5.22/0.25 4.22/0.24  20.33/0.71 14.67/0.63
med. med. | 3.94/0.24  5.17/0.22 4.17/0.28  22.50/1.64  13.89/1.00
med.  high | 4.39/0.29  3.56/0.29 4.11/0.36  26.89/1.04  17.28/1.00
high low 4.44/0.37  3.28/0.21 5.44/0.35  28.67/1.01 13.94/1.00
high med. | 4.17/0.25  3.83/0.22 4.61/0.18  25.44/1.08  19.33/0.96
high high 4.78/0.31  3.11/0.27 3.89/0.29  25.17/1.23 17.89/1.37
Average 4.57/0.29  4.65/0.25 4.27/026  22.96/1.24  15.97/0.99

(b) Mean and standard deviation for iCat (N=18)

TABLE II: Mean and standard deviations. Reported in the
format: mean/std. dev. (acc. = acceleration, cur. = curvature)

interview was performed in which the participants were asked:
1) to give their general impressions on the behaviors, 2) to
describe the differences and similarities of the behaviors,
3) to indicate a preference for behaviors and to elaborate
why and 4) to compare the observed behaviors with behaviors
they would expect from a commercial product. At last the
participants received a small reimbursement according to the
guidelines of the J.F. Shouten participant database.

V. RESULTS
A. Gender effects

First of all, we tested whether gender had an effect. We
performed an analysis of variance with the sex as independent
variable and tested if there is a significant effect on any
combination of acceleration and curvature for the Roomba
and the iCat condition. All combinations summed up to
a total of 90 measurements (three levels for acceleration,
three levels for curvature, two levels for embodiment and
five measurements for valence, arousal, dominance, positive
affect and negative effect). Neither significant main effects nor
significant interactions were found for gender. Hence gender
could be excluded from the following measurements.

B. Perception of affect

In order to test whether the motion features had an impact
on the perception of affect we performed a repeated measure
analysis with the independent variables curvature, acceleration,
embodiment and the dependent variables valence, arousal,
dominance, positive affect and negative affect. The mean
and standard deviation for the measurements for Roomba are
summarized in Table Ila and the according values for iCat are
summarized in Table IIb. The significance levels and partial
eta square effect sizes for the main and interaction effects are
reported in Tables IVa and IVb. Mauchly’s test indicated that
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Fig. 5: Marginal means for acceleration, curvature and embod-
iment using the SAM scale.

sphericity was for none of the cases violated, therefore degrees
of freedom did not have to be corrected.

From Table IVa it can be seen that the embodiment had no
main effect on the measurements, but that in general accel-
eration and curvature showed significant effects. Interestingly,
acceleration had no effect on valance. The marginal means
for acceleration, curvature and embodiment are exemplary
visualized for the SAM scale in Fig. 5. From the graphs it
can be seen that acceleration is correlated to arousal, but that
there is no effect on valance. In contrast, curvature has an
influence on all three measures, even though not all levels
differed significantly from each other.

We compared the results from the PANAS and SAM scales
and found both to be similarly responsive to the manipulations
of the independent variables. In our repeated measure design,
we calculated for every experimental condition a correlation
table for the five measurements, resulting in 18 tables with 5x5
entries. We calculated a mean correlation table by averaging
over the factors. The mean correlation values are reported
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valence arousal dominance PA NA
1% 1.00 0.11 -0.17  -0.38 0.30
A 0.11 1.00 -0.10 -0.28 0.05
D -0.17 -0.10 1.00 0.28 -0.19
PA | -0.38 -0.28 0.28 1.00  0.02
NA | 0.30 0.05 -0.19 0.02 1.00

TABLE III: Mean correlation values of the PAD and PA-NA
space. (PA = positive affect, NA = negative affect)

in Table III. The highest absolute value was found between
valence and positive affect. However, comparing the signifi-
cance values, the PAD model indicated that acceleration has
no effect on the perceived valence, which was not visible
when expressed in the positive and negative affect dimensions.
Additionally, there was some discrepancy in the interaction
between acceleration and curvature. While in the PAD space
all dimensions showed a significant interaction, this could not
be reported on the negative affect axis. Furthermore, in the
PAD space there was no interaction between curvature and
embodiment visible. A similar observation can be made when
analyzing the three way interaction of acceleration, curvature
and embodiment. Only along the valence axis this interaction
was significant, while both, the positive and negative dimen-
sions showed significance.

C. Relation of motion features to perceived affect

In order to estimate a relation between the motion and
affective space, we performed a linear regression analysis. As
model parameters we used the linear and squared terms of
acceleration and curvature as well as the linear interaction
between those two. We did not include the embodiment,
because it did not have a main effect in the previous analysis.
Furthermore, we only analyzed a relationship dependent on
the levels of acceleration and curvature in order to be able
to compare between the different embodiments. From the
resulting five parameters, we searched for the best predictors
using a stepwise selection in a linear regression. That is, in
every step the predictor that contributed the most to minimize
the residual error was chosen. The results are summarized in
Table V. The first column gives the order of the predictors,
the second column gives the quality of the approximation,
i.e., how much of the variance is accounted for by the model
the third column gives the corresponding ANOVA results for
testing the approximation. First, from these values it can be
seen that most of the information for perceived arousal is
carried in the acceleration parameter of the motion. Secondly,
even if all ANOVAs report significant results, only small
percentages of the variance could be predicted with these
simple models. This is most evident for the PA-NA space in
which the variance of the negative affect dimension cannot
conclusive be explained with the calculated models.

During the final interview, all but one participant reported
that they had the impression that the robots clearly had differ-
ent emotions or were in particular moods. When asked to de-
scribe the observed behaviors, all participants used emotional
adjectives to describe the robots’ behavior, e.g., “...this one
was a little moody. It seemed to be not very happy with what



Saerbeck, M., & Bartneck, C. (2010). Attribution of affect to robot motion. Proceedings of the 5th ACM/IEEE International Conference on
Human-Robot Interaction (HRI2010), Osaka pp. 53-60. | DOI: 10.1145/1734454.1734473

\ acceleration curvature embodiment acc.*cur. acc.*emb. cur.*emb. acc.*cur.*emb.
F p pn F o p o F o p pn F  p pn> F  p,n> F p ,n° F  p pn
14 155 478 043 15726 .000 481 2.018 .174 .106 4331 .004 203 .146 .865 .009 .381 .686 .022 4215 .004 .199
A 114.112 .000 .870 19.546 .000 .535 .230 .638 .013 3.109 .021 .155 1.708 .196 .091 704 502 .040 1.708 .158 .091
D 11255 .000 .398 4.687 .016 216 .084 .776  .005 4.157 .005 .196 727 491 .041 .173 842 .010 1.019 .404 .057
PA 28.061 .000 .623 4336 .021 .203 .014 909 .001 2.843 .031 .143 2.077 .141 .109 1.027 369 .057 3.747 .008 .181
NA 9.457 .001 357 3.857 .031 .031 3.871 .066 .185 1.990 .106 .105 1.033 .367 .057 4.005 .027 .191 5202 .001 .234

(a) Main effects of acceleration, curvature and embodiment

(b) Interaction effects of acceleration, curvature and embodiment

TABLE IV: Significance values for the effects of the independent variables on the measurements and and partial 1? effect
sizes. (N=18) V=Valence, A=Arousal, D=dominance, PA=positive affect, NA=negative affect

‘ predictors Adjusted R? ANOVA
v D ax*r 0.10 F(1,616)=7.26, p = 0.07
A M) a?) k2B) a * k 0.471 F(3,614)=184.03, p < 0.001
D 1) a®Q) a* B3) K 0.10 F(3,614)=23.86, p < 0.001
PA (1) a®Q) & 0.106 F(2,615)=37.70, p < 0.001
NA | (1) a?®) aB3) k24 & 0.063 F(4,613)=11.41, p < 0.001

TABLE V: Stepwise linear regression results.

he was doing.”(participant 6). All participants consistently
attributed animacy and almost all participants perceived some
type of personality.

VI. DISCUSSION

The first reaction of all participants after the experiment
has been that they were surprised by the variety of emotions
expressed by the devices. They reported to have almost always
an immediate impression on how the robot felt in a given
condition, and had no difficulties in filling in the scales.

Most interestingly, the above results suggest that there is no
significant difference between the embodiments, despite their
very different physical setup. For both embodiments and in
both scales, participants interpreted the motion patterns in the
same emotional categories. This result has interesting implica-
tions on the design of robotic behavior, because it suggests that
motion design tools can be used across embodiments. Even
more specific, the results show that acceleration is correlated
with the perceived arousal. Therefore, the perceived arousal
can be controlled by varying the acceleration parameter of
the motion. However, no such direct relationship between
acceleration or curvature and valence could be found.

Pollick et al. estimated that most of the information on the
valence axis is encoded in the frequency relations between
limb movements [25]. However, in our experiment the Roomba
robot did not possess limbs, but participants were still able
to perceive different levels of affect. Our results suggest that
the valence information is at least partly encoded in the
interaction between acceleration and curvature. However, this
model did not explain a sufficient amount of the variance to
be conclusive. Analysis of further motion features and models
is required to isolate the valence information from motion
signals.

The significant interaction between acceleration and cur-
vature suggests that these parameters are not perceived in-
dependently from each other. Even though the dimensions
of acceleration and curvature are independent in movement
space and the dimensions valance, arousal and dominance are
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independent in affect space. They interfere in the cognitive
process that transforms between the two spaces. This interac-
tion is also influenced by the embodiment, as can be seen in
the three way interaction between acceleration, curvature and
embodiment (see IVb). Based on the spontaneous responses
of the participants, we assume that this effect resulted mainly
from the expectations that the participant had regarding the
behavior of the robots. However, the change of perception can
be mainly attributed to the change of the motion characteristics
and has similar tendency for both embodiments. For example,
leaving the curvature constant but changing the acceleration
from low to high was interpreted in the Roomba condition
as a change from ‘“careful”(participant 27), “moving like
a cat that wants attention”(participant 6), “not determined
wandering around” (participant 9) to “stressed”(participant 4),
“aggressive; guarding an area”(participant 25) or even “very
proud, exhibiting a macho kind of behavior” (participant 7).
The same manipulation in the iCat condition resulted in a
change from “falling asleep” (participant 4) and ‘“calm and
relaxed” (participant 19) to “nervously searching” (participant
16) and “very chaotic and unorganized” (participant 6). More
research needs to be done to clarify the exact structure of the
manipulations.

It furthermore remains to be tested if discrepancies between
the PAD space and positive-negative affect space can be
explained by being a rotational variant of the same space.
For example, Mehrabian claimed that the PANAS model lacks
validity, because it does not capture certain aspects of the
affective space [22]. Furthermore, some participants reported
that they missed words on the PANAS scale such as “happy”,
“tired”, “moody”, “confused” or “disinterested” and therefore
rated the other items lower, because they did not seem to fit
their impression. A specialized questionnaire would have to
be developed that captures possible interpretations of motion
patterns better than the PANAS. In contrast there were no
problems with the SAM scale.

VII. CONCLUSIONS

In this study we investigated the relation between robot
motion and the perceived affective state of the robot. From
literature we derived two motion characteristics that seemed
to be most influential for the perceived affective state, namely
acceleration and curvature. We systematically varied both con-
ditions and tested the perceived affect with two embodiments.
For assessing affect we selected the PANAS and SAM scales,
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which are supposed to be rotational variants of the same space.
With our variations we were able to trigger the perception of
different emotions.

We found that both parameters, acceleration and curvature,
have a significant effect on the perceived affective state. How-
ever, there were slight differences between the two emotional
models that were difficult to explain by being a rotational
variant. In general, we found the SAM to be more appropriate,
because all participants were able to report their general
impression according to the pictographic representation of the
self-assessment manikins.

Furthermore, we found that the embodiment had no signifi-
cant main effect on the perceived affective state, stressing the
importance for carefully designed robot behaviors. Analyzing
the relationship in more detail, we found that acceleration car-
ries most of the information for perceived arousal. However, no
such simple relationship could be found for the dimensions of
valence and dominance or for the dimensions of positive affect
and negative affect. Our results indicate that the information
for valence is at least partly carried by a linear interaction
between curvature and acceleration.

From these results we can derive design knowledge for the
design of movement behaviors of social robotic interfaces. If
the designer wants to convey different levels of arousal he can
adjust the acceleration parameter of the animation accordingly.
Motion can therefore be used as a design modality to induce a
desired perception. Even stronger, the effect of manipulations
also holds across embodiments. Therefore, tools for designing
motion trajectories can be generalized and applied to multiple
embodiments. Further research is needed to investigate such a
model for valence. Especially if a designer intends to convey a
positive or negative emotion it has to be analyzed what motion
features carry this valence information in order to be able to
predict user responses.
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