Bartneck, C., Soucy, M., Fleuret, K., & Sandoval, E. B. (2015). The Robot Engine - Making The Unity 3D Game Engine Work For HRI.
Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2015), Kobe pp. 431 - 437.
DOI: 10.1109/ROMAN.2015.7333561

The Robot Engine - Making The Unity 3D
Game Engine Work For HRI

Christoph Bartneck, Marius Soucy, Kevin Fleuret, Eduardo B. Sandoval!

Abstract—HRI is a multi-disciplinary research field and
integrating the range of expertise into a single project can be
challenging. Enabling experts on human behavior to design
fluent animations and behaviors for advanced robots is prob-
lematic, since the tools available for such robots are often in
their prototype stage. We have built The Robot Engine (TRE)
based on the Unity 3D Game Engine to control robots with
Unity 3D. Unity 3D allows non-programmers to use a set of
powerful animation and interaction design tools to visually
program and animate robots. We review several animation
techniques that are common in computer games and that could
make the movements of robots more natural and convincing. We
demonstrate the use of TRE with two different Arduino based
robot platforms and believe that it can easily be extended for use
with other robots. We further believe that this unconventional
integration of technologies has the potential to fully bring the
expertise of interaction designers into the process of advanced
human-robot interaction projects.

I. INTRODUCTION

The field of Human-Robot Interaction (HRI) is inherently
multidisciplinary [1]. Researchers and developers from the
areas of engineering, computer science, psychology and
design need to work together to make HRI projects a
success. The HRI Conference has itself acknowledged its
multidisciplinary nature by introducing “Themes” and their
associated committees. Working in multidisciplinary teams
can be challenging and one of the biggest hurdles is that
experts on human behavior and interaction design often do
not have the technical skills to program the advanced robots
the engineers are constructing. When working at the cutting
edge of engineering and computer science there are often
only prototype hardware and software packages available.
These more often than not require classical programming in
order to control the interaction with humans. Once a platform
matures and becomes more widely available the associated
tools also become more sophisticated and easier for human
behavior experts and interaction designers to use.

An example of mature hardware and software is the
NAO platform from Aldebaran. Its Choregraphe software [2]
enables users to control the behavior of the robot without
writing a single line of code. Choregraphe is currently
the golden standard for easily animating and programming
robots, but it works with only a single robot: NAO. It is
therefore not suitable for HRI projects that develop their own
robotic hardware or that use robotic hardware from other
manufacturers. The LEGO Mindstorms platform is even

*This work was not supported by any organization

LHIT Lab NZ, University of Canterbury, Pri-
vate Bag 4800, 8140 Christchurch, New Zealand.
christoph.bartneck@canterbury.ac.nz

easier to use and is targeted at children and young adults.
This ease of use is required to enable interaction designers
to unfold their full potential in HRI projects. Currently, these
experts are forced to use tools that are as difficult to them as
it would be for a computer scientist to program robots using
assembly language.

In this paper we introduce a new approach to animating
robots and programming the interaction with users: The
Robot Engine (TRE). The design principle of TRE follows
the First Rule of Design: “Do not design what you can copy”’.
We therefore use the powerful animation and programming
tools of a game engine to give interaction designers the
tools they need. TRE then connects the movements in the
virtual world to the motors and sensors of the real world.
This approach is so simple and powerful that we ourselves
are surprised that it has not yet already been widely used.
We believe that TRE has the potential to bridge the gap
between engineers and computer scientists on the one side
and psychologists and designers on the other.

First we will review existing animation and interaction
design software that is being used in HRI. Second, we
will describe the TRE system and present two case studies.
Last, we will discuss the limitations of TRE and its future
development.

II. HRI SOFTWARE

There are several middle-ware solutions for robots, such
as the Robot Operating System (ROS) [3] or Microsoft’s
Robotics Developers Studio (MRDS) [4]. These frameworks
offer libraries and tools to help developers create their own
robot control applications. To use these frameworks devel-
opers need to know programming languages, such as C++
or Python. They therefore do not overcome the fundamental
gap described above.

A. Programming Languages

There are many different programming languages that
have evolved over time, though an argument can be made
that the most dramatic inventions were made in the sev-
enties. Without going into the history and classification of
programming languages (the interested reader may wish to
consult [5]), we would like to share our observation that the
languages being used in HRI vary in their abstraction levels.
Abstraction levels are typically correlated to the ease of use
for non-programmers, meaning that the more low- level lan-
guages, such as C, are harder for interaction designers to use
than higher level languages, such as Java. A popular solution
for robots is the combination of Processing, a simplified

Bartneck, C., Soucy, M., Fleuret, K., & Sandoval, E. B. (2015). The Robot Engine - Making The Unity 3D Game Engine Work For HRI.
Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2015), Kobe pp. 431 - 437.
DOI: 10.1109/ROMAN.2015.7333561

version of Java, with the Arduino micro controllers. A large
community of “Makers” uses this powerful combination
to develop do-it-yourself projects, and textbooks are even
available [6]. Visual Programming Languages (VPL), such as
LabView [7], Scratch [8], and MAX [9] go one step further
by using graphical elements on the screen to capture the
common elements of programming languages [10]. These
VPLs are easy to learn and enable children to program robots
such as LEGO Mindstorms.

However, the animation of robots escapes the boundaries
of programming languages completely. The human mind
is highly trained to perceive biological movement. This
sensitivity challenges even the most sophisticated computer
animation tools and today’s computer characters are still
being animated using motion tracking. A robot does not
necessarily need to exhibit natural biological movements,
but the fact remains that social gestures and body language
are very difficult to program directly using mathematical
functions such as sine waves.

Following the First Rule of Design it appears useful
to investigate what tools are being used to animate and
control the robots’ next of kin: computer game characters.
One could argue that social robots are essentially computer
game characters on wheels. These characters also need to
be animated and have to interact with the user. Computer
game characters are in many ways easier to control since
they operate in a virtual environment in which the noise of
sensors plays little to no role at all.

B. Game Engines

Years ago, computer game developers faced the same
problem that HRI researchers face today: how to enable the
experts to make a game fun, and how to quickly develop
games without having to program directly in low-level lan-
guages. Their solution was to develop Game Engines that
include graphical editors for not only creating the visual
artwork, but also animating it and scripting the interaction
with the users. Similar to Choregraphe, these game engines
used to be specific to hardware platforms and not open
source. Several Game Engines, such as the Unreal Engine,
CryEngine and Unity 3D became available and possibly due
to the increased competition, the Game Engines became
multi-platform, Open Source, and freely available for ed-
ucation and research. There is hope that the HRI software
will follow a similar trajectory.

Game Engines are not only useful for developing games;
they have been successfully used in scientific research [11].
They are already in use for robotics, in particular for
simulations [12] and visualizations, such as MORSE [13].
This comes as no surprise, since the RoboCup competition
even features a “Soccer Simulation League”. The USARSim
can be used to simulate and visualize robots and their
environment for such competitions [14]. Ohashi et al used
a Game Engine to remotely control a robot through the
internet [15]. It is important to note that already today Game
Engines include modules that allow the game to process
input not only from the mouse and keyboard, but also from

cameras and microphones. Games can be programmed to be
controlled using gestures and speech. Controlling hardware,
however, is far less developed. It has therefore been the main
focus for the development of TRE.

III. THE ROBOT ENGINE

Following the First Rule of Design we built TRE on top of
a Game Engine. There were several Game Engines that could
potentially be used, such as Unreal Engine, CryEngine and
Unity 3D. These Game Engines largely compete on features
that are not necessarily relevant to HRI, such as their ability
to quickly draw polygons on the screen, but for the purposes
of HRI the following features are of importance:

1) An easy-to-use graphical user interface for animating
objects and controlling interaction

2) The ability to communicate with external hardware

3) The ability to process multimedia sensory data

4) Being freely available for research and education

5) The ability to offer support for multiple operating
systems

We decided to use Unity 3D for TRE because it not only
fulfilled all these requirements; there is a strong developer
community supporting its progress. Unity 3D has a plug-
in architecture that allows these developers to extend the
core functionality, although this is restricted to the “Pro”
version. It should be noted that there are already plug-ins
available to recognize speech, understand the users’ gestures
using Microsoft’s Kinect, and use advanced computer vision
methods by integrating OpenCV. We do not claim to have
made the best possible choice, but during the development
of TRE we did not encounter any major problems and hence
feel confident that the choice was good enough.

Our main technical contribution was to develop a plug-
in to communicate with sensors and actuators from within
Unity 3D. In addition we integrated several available plug-
ins, such as a speech recognizer and a computer vision library
to enable our robots to process sensory information. We
thereby made a proof of concept for the power of using Game
Engines for controlling the interaction between humans and
robots.

A. System Architecture

In this paper we cannot provide a full introduction to the
structure and operation of Unity 3D. We have to constrain
ourselves to provide a short overview of TRE and its as-
sociated components. TRE consists of the MainScript, Mod-
elScript, SerialCommunicationScript and the AnimatorScript
(see Figure [I).

The MainScript has two functions. First, it manages all
other scripts, modules and graphical user interface elements.
It (de)activates modules, such as the speech recognition, text-
to-speech (TTS) module and a computer vision module. The
speech recognition module is based on Miscrosoft Kinect and
requires the Kinect SDK to be installed. The TTS system
is based on Microsoft Windows Voice and the computer
vision module is based on OpenCV. Optional modules in-
clude and interface to Leap Motion, a device that can track

Bartneck, C., Soucy, M., Fleuret, K., & Sandoval, E. B. (2015). The Robot Engine - Making The Unity 3D Game Engine Work For HRI.
Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2015), Kobe pp. 431 - 437.
DOI: 10.1109/ROMAN.2015.7333561

Absolute
Position

Animator
Component

Transform

Fig. 1.

hand gestures. The Unity 3D assets store has many more
modules that can be integrated. Second, MainScript connects
the scripts and modules with the GameObjects. In Unity
3D, GameObjects are all the elements of a game, such as
characters, scenes and props [16]. In the case of TRE, every
part of the robot in the 3D model is a GameObject with
particular characteristics, such as eyes, head, arms and torso.

The ModelScript manages all the mechanical parts of the
robot associated with the GameObjects in the 3D model. In
the case of the InMoov robot, there are 26 GameObjects
matching the 26 main parts of the robot, such as the
torso or head. The main function of the ModelScript is
to convert the absolute positions of the GameObjects into
the relative positions needed for the robot. The head, for
example, will have an absolute position and orientation in
the game world, but what the robot needs is the relative
angle between the head and the torso. From this the desired
angle for the servo motors can be calculated. Furthermore,
the ModelScript translates the constraints that the physical
robot has into the virtual robot. The head, for example,
may only be able to rotate 180 degrees. This constraint
must also be introduced into the virtual robot so that it
does not perform movements that would be impossible for
the physical robot to execute. The ModelSCript sends the
appropriate angles to the SerialCommunicationScript to the
Arduino board, which is attached to the computer through
a USB port. The SerialCommunicationScript also handles
the mapping of the GameObjects to the servo PINs on the
Arduino board. It determines, for example, that the head
GameObject is mapped to the servo attached to PIN number
one on the Arduino board. A small software script on the
Arduino simply directs the servos to the desired angle.

The AnimatorScript manages the Animator component
that is part of Unity 3D’s Mecanim Animation System. It
manages the animations of the GameObjects and sends the
positions and angles of the GameObjects to the ModelScript.
It also catches keyboard presses and maps them to the
graphical user interface elements, such as sliders.

nnnnnnn

®
12

| L ,
e

<)
2

KINECT

il

Flow diagram

TRE also includes two scripts that need to be executed on
the Arduino boards. The debugging script is used for testing
the wiring and mapping of the servo motors, and the control
script then takes the commands from the SerialCommuni-
cationScript and moves the servo motors into the desired
position.

IV. PROCESS

The first step is to build your physical robot. You may
consider 3D printing one of the openly available robots, but
you may also have your own ideas for an HRI project. For
the two robots described in the case studies below we used
Arduino micro controllers that are able to control up to 30
servo motors. Figure [2] shows a typical wiring of Arduino
controllers, a battery and several servo motors. When more
servo motors are connected it may become necessary to
power the Arduino boards with a 5V power supply.

Fig. 2. Example of Arduino wiring

For the development of your robot you will be likely to
have used 3D modelling software to prepare the manufactur-
ing of all the required parts. Figure [3] shows the construction
of a LEGO Robot in the 3D modelling software Blender.
This free software is a popular tool for 3D modelling and
animation but it is not a Game Engine in itself. Unity 3D is
able to import a large variety of 3D file types and can then
serve as a starting point for constructing the humanoid avatar

Bartneck, C., Soucy, M., Fleuret, K., & Sandoval, E. B. (2015). The Robot Engine - Making The Unity 3D Game Engine Work For HRI.
Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2015), Kobe pp. 431 - 437.
DOI: 10.1109/ROMAN.2015.7333561

in Mecanim. Note that humanoid does not necessarily mean
that the robot must have a human shape; it simply means
a torso and four extremities. Alternative body shapes can
also be animated using inverse kinematics, but this requires
additional work.

Fig. 3.

3D modeling with Blender

The second step is to create a new project in Unity 3D and
to import the TRE package. Next, you can either import the
already existing 3D geometry files or create the 3D geometry
in Unity 3D. Unity 3D has a good set of tools for free
modeling and it is matter of personal preference whether
you want to model the geometry in Unity 3D or another 3D
program. The next step is to place all the 3D models into
the scene, which automatically turns them into GameObjects.
You need to define the parameters in the ModelScript to
describe the mechanical constraints of your physical robot,
and then the scripts need to be associated to the appropriate
GameObjects (see Figure [

The third step is to run a debugging script on the Arduino
to test the wiring and its connectivity to Unity 3D. You
can then use the confirmed configuration to configure the
Arduino control script. The next step is to define the PIN
numbers in the Arduino script. Figure [3] shows an example
of a configuration. Each line describes one servo motor and
consists of a pin number followed by four values. The first
value is the minimum angle of the articulation, the second
is the maximum, the third is the initial position, and the last
is the option to reverse the rotational direction.

The TRE is now ready for use and you can use Unity 3D’s
powerful animation tools to create convincing expressions.
You only need to create an Animator controller and attach it
to your GameObject. You may also want to add additional
modules to the scene by connecting the modules to the
appropriate GameObjects in the scene. TRE already provides
access to text-to-speech, speech recognition and computer
vision. Once you are finished with the design of your
animations, behaviors and interactions with users you can
compile your Unity 3D project into an executable file that
can be played on many different platforms, but note that due
to the dependencies of some plug-ins on certain libraries such
as the Kinnect SDK, not all platforms may be suitable for
the distribution of your HRI project. Unity also has a build
in collision control that enables the programmer to trigger
events in case an animation would result in a situation in
which the robot makes moves that could harm itself.

BUTLLLIT Ilas LI LGN LSS AR LIS DTS LGN

#define NBR_SERVOS 15
#define INIT ACTIV O

J/List of limits of the different servos
const int limit[HBE_SERVOS][4] = {
{0,180,0,1},

{0,180,0,1},
{10,160,90,0},
{10,170,90,0}%,
{100,155,105,1},
{70,98,89,1},
{a0,108,9¢&,1},
{B5,104,95,1},
{0,180,0,1},
{0,180,0,1},
{0,180,0,1},
{0,180,0,1},
{0,180,0,1},
{0,180,0,1},
{0,180,0,1}}:

L USE

n use

PINZ head horizontal

‘PINZ head vertical

‘PINA Jaw

J/PINS right eye
//PINE left_e

‘PINT wertical _eyes

'PINNG

J//PING

J/PINLD

'PINL1

'PINLZ

S/PINLS

J/PINLA shoulder side R

(without camera)

diCommand Tdentifiers. Amend this list with wour owm command i

Fig. 5. Placement of the motors limits

A. Case Study 1: LEGO Fireman

The first robot we controlled using TRE was Fireman. We
bought a LEGO LED torch in the shape of a Fireman (see
Figure [6). We removed all the internal components, such
as battery compartment, switch and LEDs. We placed servo
motors in the torso, head, arms and legs, resulting in six
degrees of freedom. In addition we placed a USB webcam
with a microphone in the head. The LEGO Fireman was
mounted on a base, which also enclosed an Arduino micro-
controller and a speaker. This robot is a typical example of
a simple robot that can be used as a conversational agent.

Fig. 6. The LEGO Fireman Robot

We created a 3D model of the LEGO Fireman using
Blender and imported it into Unity 3D (see figure [7} After
configuring the TRE modules we could animate the robot
using the virtual robot. We implemented a simple face
tracking behavior in which the robot used its head and hip
rotation to follow the face of a user. The full documentation

Bartneck, C., Soucy, M., Fleuret, K., & Sandoval, E. B. (2015). The Robot Engine - Making The Unity 3D Game Engine Work For HRI.
Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2015), Kobe pp. 431 - 437.
DOI: 10.1109/ROMAN.2015.7333561

File Edit Assets GameObject Component Window Help

I

|l

@ sending DEBUG<D]86>

del (Script)
B Model

(Transforn

Fig. 4. Unity project settings

of this project is available EI

Fig. 7. Lego Robot in Unity

B. Case Study 2: InMoov

The original development of robotic hardware typically
required expensive machine tools and expert knowledge. The
arrival of 3D printers in combination with the development
of easy to use micro controllers, such as the Arduino boards,
enabled enthusiastic amateurs to build their own robots.
Similar to open source software we are now encountering
the first open source hardware projects. The Intel Company
recently announced its own 3D printable robot called Jimmy
and more companies are expected to come forward with
their own robotic hardware soon. The InMoov robot [17]

1 http://bartneck.de/publications/2015/unity/
index.html

is another example of such an open source hardware robot.
Anybody can download the 3D files and blueprints and start
printing their own InMoov robot.

We decided to engage in this open source hardware robotic
development and printed an InMoov robot (see figure [8).
Printing all the required parts was a considerable task and
we even decided to print some of the moving parts on a
professional 3D printer to reduce friction. Our InMoov has
25 degrees of freedom and includes two cameras, a Microsoft
Kinect and a speaker.

We imported the 3D files provided for the InMoov robot
into the Blender software. From there we exported it to a
format compatible with Unity 3D (see figure [9). Similar to
the LEGO fireman we configured the TRE models to fit this
specific hardware configuration. Afterwards we were able
to fully control the InMoov robot using Unity 3D. We also
implemented face tracking using the two degrees of freedom
of the head.

V. EVALUATION

We have not been able to run a fully controlled user study
for TRE but we did develop a set of tutorials that enables
users familiar with Unity 3D to quickly install and use it.
We asked two members of our lab who had not previously
been involved in the project to follow these instructions, and
based on their feedback were able to identify several issues
with the manual and with TRE. We have made the necessary
changes and are now of the opinion that they are sufficiently

http://bartneck.de/publications/2015/unity/index.html
http://bartneck.de/publications/2015/unity/index.html

Bartneck, C., Soucy, M., Fleuret, K., & Sandoval, E. B. (2015). The Robot Engine - Making The Unity 3D Game Engine Work For HRI.
Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2015), Kobe pp. 431 - 437.
DOI: 10.1109/ROMAN.2015.7333561

Fig. 8. InMoov Robot

Fig. 9.

InMoov robot in Unity

useful for others to follow. This does not of course replace
a full usability evaluation or a controlled experiment, but for
this stage of the project the evaluation was most informative
[18]. At a later stage in the project other forms of evaluation
will become the preferred option.

VI. CONCLUSIONS

We have developed The Robot Engine (TRE), a plug-in
for the Unity 3D Game Engine. TRE enables users with
little to no programming experience to animate robots and
to control the interaction with humans. The Unity 3D Game
Engine has a powerful set of animation tools that go beyond
what Choregraphe has to offer. The tools that are being used
to develop the most advanced computer games are now at the
fingertips of HRI researchers. The Graphical User Interface
of Unity 3D is also designed with creative people in mind; it
is an excellent tool for interaction designers to take control
of human-robot interaction. Like many other Game Engines,
Unity 3D is for free for research and educational purposes
and it is able to compile executable programs for different
hardware platforms. It also features a large number of plug-
ins for human-computer interaction that are also applicable
to human-robot interaction, such as text-to-speech, speech
recognition and computer vision. TRE does seem to be an
ideal tool for the democratization of the robot development.

Many “Makers” are already using Arduino and 3D printers
to develop interactive social robots. With TRE they now also
have an easy to use tool for designing their interaction.

One advantage of using a Game Engine as the control
software is that it is not only possible to develop stand alone
software; it is also possible to easily build graphical user
interfaces to directly control the robot in real time. Given
the large number of Wizard of Oz types of studies in the
field of HRI, this might be a considerable advantage.

Another advantage of using a Game Engine as the an-
imation tool for robots is that it already contains many
tools that have been developed specifically for animating
biological life forms. Unity 3D’s Mecanim animation system,
for example, has a dedicated Humanoid Avatar option. Using
a Humanoid Avatar allows you to map your specific robot to
a more general humanoid body shape. Once this mapping
is completed, a huge library of readymade motions and
behaviors can be applied to the robot. There are, for example,
several idle and pointing animations. Moreover, Mecanim
includes an Animation State Machine, which allows the
animator to define the transitions between animation states.
A robot might have restrictions on the next animation state it
can go to rather than being able to switch immediately from
any state to any other. The states and transitions of a state
machine can be represented using a graph diagram within
Unity 3D, where the nodes represent the states and the arcs
represent the transitions (see Figure [I0).

(Look At User H Talk)
Approach
User
(Idle H Roam)

Fig. 10. Animation State Graph

A common task in game animation that is also highly
relevant for robot animation is to blend two or more similar
motions. Perhaps the best known example is the blending of
walking and running animations according to the character’s
speed. Another example is a character expressing a blend
of different emotions through its face. The Mecanim system
allows animations to be blended into each other.

Another game character animation technique that is useful
for animating robots is Inverse Kinematics. The “bones” of
the virtual robot are connected and constrained thought the
Animator module. It is then possible, for example, to position
the hand of the robot in space with the lower and upper
arm following accordingly, thereby making it sufficient to
animate only the hand instead of all parts of the arm. All of
these animation techniques are commonly used in computer
games and with TER have now also become available for an-
imating robots. We believe that these interaction techniques

Bartneck, C., Soucy, M., Fleuret, K., & Sandoval, E. B. (2015). The Robot Engine - Making The Unity 3D Game Engine Work For HRI.
Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN2015), Kobe pp. 431 - 437.
DOI: 10.1109/ROMAN.2015.7333561

can make a powerful contribution towards more natural and
pleasing robotic movements.

While Game Engines have been used for robotics before,
they have not been widely used for the animation of robots
and the design of their interaction with humans. We are
almost embarrassed to propose such an obviously useful
integration of technologies for fear that we might have failed
to understand why this would be a bad idea. But our two case
studies have convinced us that there are no clear reasons for
not using a Game Engine for controlling social robots. The
technical challenges of developing TRE were modest, but
we believe that our unconventional integration of technolo-
gies can empower non-programmers to fully integrate their
expertise in interaction design and human behavior into the
development process of advanced HRI projects.

A. Limitations and future work

At this point, TRE only communicates to the Arduino
micro-controller, but it would be simple to extend it to talk
to other micro-controllers using the serial port. We intend to
enable more than one Arduino to receive commands from
Unity 3D. It will also be useful in the future to be able to
receive sensory information through sensors attached to the
Arduino board, rather than as right now, where the sensors
such as cameras and microphones are being attached to the
computer directly. We also intend to connect other equipment
to TRE, such as Leap Motion module and joysticks, and it
would additionally be desirable to be able to connect open
source speech software, such as Sphinx and Festival.

Moreover, it might be desireable for TRE to connect the
Robot Operating System (ROS) middleware so that more
robots can take advantage of the animation tools of unity.
ROS also offers the option to access motion planners, inverse
kinematics solvers and collision checker modules.

While Unity 3D is a powerful animation and interaction
design tool, its complexity might challenge users at the
beginning. Unity 3D is, however, one of the best documented
Game Engines and there are many tutorial videos and com-
munity support forums. But with its complexity also comes
an enormous opportunity of designing beautiful movements.
We must also acknowledge that once Choregraphe becomes
available for other robotic platforms then TRE might lose its
competitive edge.

REFERENCES

[1] C. Bartneck, “The end of the beginning - a reflection on the first
five years of the hri conference,” Scientometrics, vol. 86, no. 2, pp.
487-504, 2011.

[2] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, “Choregraphe: a
graphical tool for humanoid robot programming,” in RO-MAN 2009
- The 18th IEEE International Symposium on Robot and Human
Interactive Communication. 1EEE, Sept. 2009, pp. 46-51.

[3] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no.
3.2, 2009, p. 5. [Online]. Available: http://publ.willowgarage.com/
~konolige/cs225B/docs/quigley-icra2009-ros.pdf

[4] J. Jackson, “Microsoft robotics studio: A technical introduction,”
Robotics & Automation Magazine, IEEE, vol. 14, no. 4, pp. 82-87,
2007.

[5]
[6]
[7]

[8]

[9]
[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

G. O’Regan, “History of programming languages,” in A Brief History
of Computing. Springer London, 2012, pp. 121-144.

J. Noble, Programming Interactivity: A Designer’s Guide to Process-
ing, Arduino, and Openframeworks. O’Reilly Media, Inc., 2009.

N. Ertugrul, “Towards Virtual Laboratories : a Survey of LabVIEW-
based Teaching / Learning Tools and Future Trends,” vol. 16, no. 3,
pp. 171-180, 2000. [Online]. Available: |http://www.ijee.ie/articles/
Vol16-3/ijeel 116.pdf

A. Ruthmann, J. M. Heines, G. R. Greher, P. Laidler, and C. Saulters,
“Teaching computational thinking through musical live coding in
scratch,” in Proceedings of the 41st ACM technical symposium on
Computer science education - SIGCSE ’10. New York, New York,
USA: ACM Press, 2010, pp. 351-355.

C. 74, “Max is a visual programming language for media.” [Online].
Available: http://cycling74.com/products/max

P. T. Cox, “Visual programming languages,” in Wiley Encyclopedia of
Computer Science and Engineering, B. W. Wah, Ed. Hoboken: John
Wiley, 2007, pp. 1-10.

M. Lewis and J. Jacobson, “Game engines,” Communications of the
ACM, vol. 45, no. 1, pp. 27-31, 2002.

A. Kirsch and Y. Chen, “A testbed for adaptive human-robot
collaboration,” in KI 2010: Advances in Artificial Intelligence, ser.
Lecture Notes in Computer Science, R. Dillmann, J. Beyerer,
U. Hanebeck, and T. Schultz, Eds. Springer Berlin Heidelberg,
2010, vol. 6359, pp. 58-65. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-16111-7_6

G. Milliez, E. Ferreira, M. Fiore, R. Alami, and F. Lefvre,
“Simulating human-robot interactions for dialogue strategy learning,”
in Simulation, Modeling, and Programming for Autonomous Robots,
ser. Lecture Notes in Computer Science, D. Brugali, J. Broenink,
T. Kroeger, and B. MacDonald, Eds. Springer International
Publishing, 2014, vol. 8810, pp. 62-73. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11900-7_6

S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“Usarsim: a robot simulator for research and education,” in Robotics
and Automation, 2007 IEEE International Conference on, April 2007,
pp. 1400-1405.

O. Ohashi, E. Ochiai, and Y. Kato, “A remote control method for
mobile robots using game engines,” in Advanced Information Network-
ing and Applications Workshops (WAINA), 2014 28th International
Conference on, May 2014, pp. 79-84.

“Unity - Manual: GameObject.” [Online]. Available: http://docs.
unity3d.com/Manual/class-GameObject.html

“InMoov Project,” 2014. [Online]. Available: http://www.inmoov.fr/
project/

S. Greenberg and B. Buxton, “Usability evaluation considered harmful
(some of the time),” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI 08. New York, NY,
USA: ACM, 2008, pp. 111-120.

http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf
http://www.ijee.ie/articles/Vol16-3/ijee1116.pdf
http://www.ijee.ie/articles/Vol16-3/ijee1116.pdf
http://cycling74.com/products/max
http://dx.doi.org/10.1007/978-3-642-16111-7_6
http://dx.doi.org/10.1007/978-3-642-16111-7_6
http://dx.doi.org/10.1007/978-3-319-11900-7_6
http://docs.unity3d.com/Manual/class-GameObject.html
http://docs.unity3d.com/Manual/class-GameObject.html
http://www.inmoov.fr/project/
http://www.inmoov.fr/project/

	Introduction
	HRI Software
	Programming Languages
	Game Engines

	The Robot Engine
	System Architecture

	Process
	Case Study 1: LEGO Fireman
	Case Study 2: InMoov

	Evaluation
	Conclusions
	Limitations and future work

	References

