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ABSTRACT
In this study, we set out to ask three questions. First, does
lexical entrainment with a robot interlocutor persist after
an interaction? Second, how does the influence of social
robots on humans compare with the influence of humans on
each other? Finally, what role is played by personality traits
in lexical entrainment to robots, and how does this compare
with the role of personality in entrainment to other humans?
Our experiment shows that first, robots can indeed prompt

lexical entrainment that persists after an interaction is over.
This finding is interesting since it demonstrates that speak-
ers can be linguistically influenced by a robot, in a way that
is not merely motivated by a desire to be understood. Sec-
ond, we find similarities between lexical entrainment to the
robot peer and lexical entrainment to a human peer, al-
though the effects are stronger when the peer is human.
Third, we find that whether the peer is a robot or a human,
similar personality traits contribute to lexical entrainment.
In both peer conditions, participants who score higher on
“Openness to experience” are more likely to adopt less con-
ventional terminology.

1. INTRODUCTION
It is known from numerous studies that when people talk,

they influence each other’s speech patterns, that is, speak-
ers converge on similar linguistic features [1, 11, 14, 25, 26,
35, 36]. Convergent phenomena are known to occur with
respect to pronunciations, speech rate, and sentence struc-
ture, among other domains. In the current study, we are
particularly interested in word choice. Even though in a
conversation, speakers have a wide range of words to choose
from to refer to the same entity, once one speaker chooses
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a particular reference term, his or her interlocutors tend to
follow suit by using the same term [11, 13]. The tendency
for speakers to imitate one another’s vocabulary choices is
known as lexical entrainment.

A variety of studies have shown evidence that people ad-
just their speech when interacting with machines, including
robots and speech recognition systems [4, 10, 27]. How-
ever, it is important to note that, in general, speakers may
have various reasons for adjusting their speech. For instance,
speakers may shift their language output toward that of in-
terlocutors they hold in high regard [16], suggesting that
convergence is motivated by a desire for social solidarity
or prestige. On the other hand, speakers may adjust their
speech simply to make it easier for their interlocutor to un-
derstand. Note that speakers might be especially motivated
by the second mechanism – easing comprehensibility – if
they have a poor opinion of their interlocutor’s language
abilities. Such considerations cause people to make par-
ticular adjustments when addressing a non-native language
speaker, such as speaking slower and louder, and using sim-
plified vocabulary and grammar [5, 12, 28, 32].

Indeed, Branigan et al. [8] observe that much of the exist-
ing research on linguistic accommodation to machines may,
in fact, represent this latter kind of speech shift – moti-
vated by an attempt to be understood by a device that is
far from an expert in one’s native language. Such could
be the case with previous robot research by Iio et al. [17,
18]. In that study, lexical entrainment is measured only dur-
ing the course of interaction with a robot interlocutor. For
purposes of facilitating communication (and completing the
assigned experimental task), it is only natural to switch to
terms the robot already uses. If switches are made solely for
immediate, practical purposes, they may very well not per-
sist beyond the limited scope of interactions with a robot.
In contrast, it is known that the effects of human-to-human
interactions can be extended to new conversation partners,
and they play a role in language change over time [13].

In this study, we thus test carefully for both similarities
and differences between human-robot lexical entrainment
and human-human lexical entrainment. We set out to in-
vestigate lexical entrainment to robots, such that we can
rule out mere communicative facilitation, in contrast with
previous research [17, 18]. Thus, in our experimental design,
we measure lexical entrainment effects which linger after the
interaction phase is completed. Moreover, we will compare
our lexical entrainment results with a robot peer against a
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control condition, in which a human actor takes the place of
the robot.
It is anticipated that it may be challenging to observe

shifts in word choice which are not motivated by commu-
nicative facilitation. We note, for instance, that in previ-
ous research based on Solomon Asch’s conformity studies,
participants failed to converge to robots in their choice of
English past tenses when there was no communicative in-
centive to do so [3, 7]. Thus, in an attempt to maximize
the influence of robots, we ask participants to engage in a
collaborative exercise with robots, to observe if this setup
will encourage them to accept the robots as social peers.
The collaborative exercise is based on a navigation task that
requires interaction and teamwork. In this task, the partic-
ipant and the robot have to help each other navigate on a
field, such that one team member needs to move on the field,
while the partner has the required map.
Our collaborative exercise is designed to encourage the

participant to develop a sense of in-group belonging with
his/her partner (whether robot or human). We prompted
each participant/peer pairing to be competitive against other
teams performing the tasks, with respect to the amount of
time required to finish. This team-building approach cre-
ates a situation where the the participant and robot/ac-
tor are part of the same in-group, and define themselves
against competitor out-groups [22]. The social effects of in-
groups are well-documented; individuals are known to trust
in-group members more than out-group members [24, p.
695] [29, p. 335]. Furthermore, the effect of in-group/out-
group membership can be observed between humans and
robots[22]. People are more likely to favour answers from
their own in-group than from the out-group. The effect of
in- and out-groups can also be found in linguistic settings
[34]. Unger et. al. find that participants in an in-group
will mimic their interlocutors more than if the interlocutor
is from an out-group.

1.1 Research questions
The aim of our study is to see whether social robots can

influence human language beyond the time of interaction.
Furthermore, we want to see how social robots compare to
humans in the same task. With this in mind we built the
interaction so as to test the following research questions:

1. Is it possible for a social robot to prompt lexical en-
trainment that persists even after the interaction with
the robot is complete?

2. Does the influence of social robots to humans align
with the influence of humans on each other? Is the
effect stronger in one condition compared to the other?

3. What role is played by personality traits in lexical en-
trainment to robots, and how does this compare in
lexical entrainment to other humans?

2. STIMULUS SELECTION
Before we could start experimenting with lexical entrain-

ment, we had to find image stimuli on which to influence and
test the participants. Since the items need to be used as vi-
sual reference points, we obtained highly imageable words
from the MRC Psycholinguistic Database [37]. We chose
ninety-nine items from the MRC list, and sought corre-
sponding images to serve as simple, schematic prompts that

would be visible within a complex map grid. We collected
icon images using the www.flaticon.com database, limiting
our results to images which are licensed under the Creative
Commons Licence or Flaticon Basic License. Example im-
ages appear within the map layout of Fig. 2. The next
step was to generate a list of possible terms for each of
the ninety-nine items. To do so, in a pilot study we asked
twelve volunteers to generate as many words as possible for
all ninety-nine icons. For each icon we sorted the responses
to determine which terms are most likely understandable by
future participants.

The final step was to finalize a set of eighty icons to be
used in the experiment. During this selection process we
avoided the inclusion of any icons that overlapped in their
candidate terms to avoid cross-item priming effects. For
example, both a work boot and a deck shoe might prompt
“shoe”, and thus one of these icons would be disqualified.
An illustration of an icon plus example candidate terms can
be seen in Table 1.

Ultimately, the eighty selected icons are split into two
halves: 40 items are designated as distractor items, and 40
are designated as stimulus items. For the distractor items,
it will be the participant’s job to provide directions to his
or her navigation partner. For the stimulus items, it will
be the navigation partner’s job to direct the participant; it
is thus on these items that peer influence will be exerted.
Distractor items are used to distract the participant from
the real experiment, and to give him/her the impression of
a reciprocal collaboration.

The baseline naming study discussed above was used to es-
tablish an “Expected Term List” for the 80 icons used in the
experiment, containing all the words that volunteers used as
names for the items. This list is used as a database during
the experiment, to allow for smooth interactions in response
to participants’ verbal responses. Moreover, based on the
Expected Term List, for each of the 40 stimulus icons, we
selected two top candidates (the“Preferred Pair”) as options
available to the participant’s (robot/actor) peer, to influence
the participant over the course of the experiment.

Icon Candidate Term

• Alligator

• Crocodile

• . . .

• Soldier

• Terrorist

• . . .

Table 1: Excerpt of icons plus terms from the Ex-
pected Term List

3. EXPERIMENTAL SETUP
The basic experimental design follows a pre-/main-/post-

task setup. In the pre-task, we recorded what the partici-
pant named the items we presented to them, and used this
information to customize the influence exerted during the
main task. In the main, collaborative task, the robot/ac-
tor peer introduces new words for some of the items, i.e., in
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selected instances, the peer’s terms differ from the partic-
ipant’s pre-task terms. Finally, in the post-task, we again
record what the participant calls the same icons. The influ-
ence of the main task on the post-task is then analyzed.
As an important element of this experiment design, we

wanted to see how robot influence compares to human in-
fluence. Thus, some participants were paired with a robot
partner – a robot with a synthesized female voice, which we
introduced as “Helen”. Participants in a different condition
were paired with a female actor (also named “Helen”). Our
goal was to keep the two conditions as similar as possible,
thus limiting the change only to body shape (robot vs. hu-
man), but using the same voice in each case. This, of course,
created the problem of having to provide an excuse for why
the actor has a synthesized voice. We made a decision to
tell the participant that they are in a control condition, and
that it was necessary to use the same, artificial voice that
we were using with a different group of participants.

Figure 1: Shows a successful and non-successful
robot influence comparing between the pre- and
post-tasks.

The context in which participants are tested is a map
navigation task. The general form of this task works as
follows: the two participants have both a map, in which
stimulus icons designate individual navigation points on the
map. There is only one correct route to navigate from one
side of the map to the other. To make it a collaborative
task, the two participants hold each other’s map, such that
teamwork is required to navigate successfully. The goal is
to see if a newly introduced term from one participant is
picked up by the other.
To control what the robot/actor does and says during

the experiment we use a hidden operator, in a Wizard-of-
Oz paradigm. The operator’s job is to control what the
robot/actor says during the experiment and to record the
participant’s selections. To make sure conditions are com-
parable to each other, the operator has to strictly follow a
predefined script.

3.1 Implementation
This section is intended to give, first, an overview of how

the navigation task is implemented from the participant’s
perspective, and second, how this task is implemented from
the operator’s perspective. Moreover, it will give an overview
of how the experiment’s scenario is presented to the partic-
ipant as a collaborative task.

3.1.1 Map task: The participant’s job
In the navigation task, each participant (also the actor/robot)

sees a map on a screen in front of them with a virtual avatar
representing either themselves or the partner. The map it-
self is composed of hexagonal tiles with stimulus icons on

them. Some of these tiles are yellow bordered, indicating
that this is a safe path/tile to step on (see Figure 2). The
goal is to navigate the avatar from tile to tile (step by step)
by only stepping on the yellow bordered tiles.

Figure 2: Excerpt of the game board. The yellow
bordered hexagon field show the correct path. The
red arrow highlights the avatar which represents the
participant or robot/actor.

Since we have two different types of tasks (pre-/post-task
and main-task), the way to move the avatar on the map
is slightly different. The difference depends on if the par-
ticipant is alone in the room or is collaborating with the
robot/actor. For the pre-/post-task the participant will see
his/her own avatar on the map and will also see his/her own
correct path. For the main-task, the participant will see
his/her own avatar on a map without the correct path, and
– on a different map – the partner’s avatar, with the correct
path highlighted.

The actions the participant has to take for the two types of
tasks work as follows. In the pre-/post-task the participant
is presented with a marked map; no navigational partner is
present, so for each response, the participant merely says
aloud the name of the icon on the next highlighted hexagon.
In the main-task the participant and the robot/actor take
turns. If it is the participant’s turn to move, the robot/actor
will tell the participant what icon to move to next. In this
case the participant will use the computer mouse to click
on the map space with the appropriate icon. If it is the
robot’s/actor’s turn to move, the participant will tell the
robot/actor what icon to move to next. Turn by turn, each
participant and robot/actor character will move closer to
the end of the map until the task is over.

3.1.2 Map task: The operator’s job
While the participant works through the pre-/main-/post-

tasks the operator’s job is to perform the speech-to-text
recognition that enters participant responses, and to initiate
system responses at context-appropriate times. The specific
responses of the robot/actor are determined by the partic-
ipant’s pre-task answers and a pre-set script, as described
below in Section 3.5.

While entering participant responses, the operator has
available a set of likely names for each item (the “Expected
Term List”) to allow the experiment to proceed smoothly.
During the pre-/post-task, as the participant provides the
name of each item, the operator simply clicks on the appro-
priate term from the Expected Term List. If the participant
uses a term not on the list, the operator simply records it as
“OTHER.”

During the main, collaborative task, the actions the oper-
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ator take are slightly different, as follows. If the participant
uses a word from the Expected Term List, the operator will
click this term’s button, which will prompt the robot/actor
to move to the appropriate icon on the map. Additionally,
the robot/actor will say “I’ll move to the [word]”. In case
the word is not in the list, but it is a correct term for the
given icon, the operator can click on the OTHER button.
This will also make the robot/actor move forward but will
prompt the robot to say “OK”.

3.1.3 Scenario
Linguistic research shows that social connection is needed

to influence language [33], and passive exposure to speech
(especially robot speech) may be insufficient to change be-
haviour [3, 7]. Thus, we set out to devise a collaborative
experimental task which would foster a sense of social con-
nection with a partner. Moreover, we encouraged the sense
that the participant and their robot (or actor) peer formed
an in-group, and could be contrasted against out-groups (see
Section 1).
Toward this end, we presented participants with the map

described above, and described the following scenario: Both
of you are lost in the middle of the Forest of Random Things.
You have to navigate across the landscape to reach the edge.
You need to follow the yellow bordered tiles, as you did in
the previous task. It is important to only step on the yellow
bordered tiles, and not on the other tiles.
You and your partner must collaborate by telling each

other which hexagon to travel to next. The trick is that each
of you has the map that your partner needs. You must help
each other navigate, and have to take turns. You can only
take one step before the other one can take a step. For this
task, you will use your mouse to click on the tile that your
partner tells you to move to, rather than moving your own
character, and the same applies to your partner.
You and your partner are a team, and you are competing

against other teams who will be doing the same task. The
goal is to be faster than other teams. Try not to make mis-
takes, so you can travel to the end of the map faster than
other teams.

3.2 Procedure
The series of tasks for an experiment participant proceed

as follows. (See Figure 3). First, the participant is wel-
comed by the operator into the experimental room where
s/he is asked to take a seat. At this stage, the operator
gives a short introduction about the general tasks and asks
the participant to sign the consent form. Next, the operator
start a tutorial level of the pre-task. After the participant
becomes familiar with the setup and knows how to use the
speech-to-text system to navigate around the map, the op-
erator loads the pre-task. During the pre-task the operator
moves to his/her desk where s/he is invisible to the partic-
ipant and waits until the participant finishes the pre-task.
Next, the operator asks the participant to fill out a demo-
graphic survey and complete a personality test, while the
operator brings in the robot/actor. Before the robot/actor
and participant proceed to the main-task, the operator will
introduce them to a scenario (see above). After that the op-
erator loads the main-task tutorial, so the robot/actor and
the participant can practice the task. As soon as they are
ready, the operator loads the main-task. After about ten
minutes, the main-task is over and the operator will leave

Figure 3: The experimental procedure a participant
will go through.

the room with the robot/actor. After the operator comes
back, he/she loads the post-task and asks the participant
to finish it. At the end, the participant gets debriefed and
received $10.

3.3 Apparatus
The apparatus consists of a table with two monitors on

it, an Aldebaran NAO robot or actor, a microphone and
an extra computer. The computer was used to control the
recording, run the map system and to start/control the ex-
perimental conditions. The participant and the robot/actor
are positioned opposite to each other. The angle of the mon-
itors is set in a way that the participant and the robot/actor
can see one another’s faces; however, their monitor displays
are not visible to each other.

Figure 4: Schematic depiction of the physical setup
with accurate physical dimensions.

3.4 Participants
Forty participants were recruited at the University of Can-

terbury, including students and staff. Subjects received a
voucher in the amount of $10 NZD for participating. All
participants were native New Zealand English speakers. The
average age of our participants was 23.7 years, whereas the
oldest was 45 years and the youngest was 18 years. 55% of
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the participants reported themselves as male and 45% of the
participants reported themselves as female. Out of the 40
participants, 20 were assigned to the robot-peer condition
and 20 to the human-peer condition.

3.5 Map task: The computer’s job
The responses generated by the robot/actor are based on

a script in which we define the behaviour the robot/actor
should have. This behaviour comes partially from the pre-
task, which establishes what term the participant used at
the beginning of the experiment, and partially from an in-
dividual initialization, which defines (a) the random pre-
assignment of influence strategies for each item (explained
below), and (b) the random sequence of stimulus items.
Please refer to table 2 for an excerpt from one set of random
initial conditions. This same setting would be implemented
with two different participants: one in the robot peer con-
dition, and a matched participant in the human peer condi-
tion.
The influence strategies are designed so as to be variable

for each participant: on some items, the navigation term
used by robot/actor should CHANGE from the participant’s
pre-task term. On other items, the navigation term should
MATCH the pre-task term. The balancing of CHANGE and
MATCH robot behaviours (20 items of each, for each indi-
vidual condition) is intended to allow for statistical com-
parisons of behaviours under different circumstances, that
is, when new terms are introduced by the peer, and when
they are not. Moreover, matching the participant’s pre-task
term some of the time avoids making the peer’s vocabulary
manipulation too obvious.
Since responses in the experiment are open-ended, it is

impossible to anticipate every response by participants, and
matching (or systematically changing from) these responses
is potentially quite complex. On the other hand, in many
cases the same responses are volunteered by a large number
of participants. We elected to draw on our experiment’s pi-
lot study (see Section 2) to provide the robot/actor a reper-
toire of two possible terms to choose from (the “Preferred
Pair”). This more controlled approach was felt to be prefer-
able to presenting participants with an open-ended set of
prompts. The CHANGE/MATCH designations were thus
implemented as follows. If, on a particular experiment run,
an item is designated as a MATCH, and the participant’s
pre-task answer is in the Preferred Pair (e.g., “crocodile”),
the robot’s/actor’s navigation term is also “crocodile”). If
the item was designated as a CHANGE, the robot/actor
will answer with the other item from the pair (“alligator”).
If the participant’s pre-task answer is not one of the Pre-
ferred Pair items, it is necessary to choose at random one
of the Preferred Pair items for the robot’s response. Note
that this approach means that some items originally desig-
nated as MATCH items, are effectively treated as CHANGE
items. However, this approach still results in the robot/actor
matching the participant’s original selection approximately
one-third of the time.

4. RESULTS

4.1 Peer condition comparisons: Matching spec-
ified targets

To study the effects of peer influence on post-task re-
sponses, we designated a semi-arbitrary set of response terms

as “targets”. In the present analysis, we label as the “tar-
get” the less likely of the two available peer responses, as
determined by the pre-task (across all participants). 1 The
analysis thus measures, as its dependent variable, whether
or not the participant’s post-task response was the target
response.

Table 3 shows raw numbers of how often, in each peer
condition, the participant already matched the target of in-
terest at the pre-task stage. In the human-peer condition,
participants’ pre-task answers matched the target 10.31%
of the time, compared with 12.10% for participants in the
robot-peer condition. Calculating an average (by partici-
pant) target-matching score for the pre-task reveals that
there are no significant differences between the two peer con-
ditions; (t(35.16) = -1.240, p = .22).

Moreover, the peer influence during the navigation phase
is also matched across the two peer conditions. That is, there
are no cross-condition differences in how often the (robot,
human) peer matched the target. The raw counts are shown
in Table 4. In sum, robot peers matched the target items
50.03% of time, compared with 49.49% of human peers.
Analysis of the average target-matching score (grouped by
participant, but focusing on the peer’s behaviour) reveals
that there are no significant differences between the two peer
conditions in the navigation phase: (t(37.50) = 0.234, p =
.82).

Since the tendency to match target items – in the pre-
task as well as the navigation phase – is matched across the
two peer conditions, we are justified in making comparisons
across these peer conditions in the post-task results.

Indeed, differences are evident between the post-task re-
sponses between the robot and human peer conditions. Ta-
ble 5 shows the raw numbers of post-task matches to the
target items, by condition. In the robot peer condition,
participants matched the target 24.04% of the time in the
post-task, as compared with 32.07% of the time in the hu-
man peer condition. Comparing participant-specific average
target-match scores shows that there is a significant differ-
ence in the post-task (t(36.30) = 2.532, p =.016).

4.2 Analysis 1: Effect of the navigation peer,
and differences by peer condition

The foregoing analyses shows that there are broad differ-
ences in behaviours between the human and robot peer con-
ditions. However, we now perform more fine-grained analy-
ses to explore the experiment dynamics in detail. First, we
use logistic mixed-effects regression to investigate whether
(a) a significant difference exists in post-task responses be-
tween human and robot conditions, as suggested above, and
(b) whether, in both conditions, the influence of the naviga-
tion partner is, in fact, significant.

In our regression modeling, we include several predictors
as categorical variables. First, as a between-subjects vari-
able, we note the PEER CONDITION (robot or human).
As an additional variable, we note whether the participant’s
preferred response (during the pre-task) matched the target.
Inclusion of this predictor (PRE-TASK MATCH TAR-
GET) is necessary to account for the fact that some pre-task
responses already match the target (see Table 3). Finally,

1Note that the present analysis also works in a separate
analysis, if the more likely response is chosen as the desig-
nated target.The designation of one target vs. another is
not essential.
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item Navigator PreferredTerm1 PreferredTerm2 change

thief robot robber thief CHANGE

axe participant NA-distractor NA-distractor NA-distractor

dog robot dog wolf MATCH

Table 2: An excerpt of an input setting file for one participant.

human condition robot condition

does not match target 696 684

matches target 80 94

TOTAL 776 778

Table 3: Breakdown of matches to target term: sub-
ject’s answer during pre-task.

human condition robot condition

does not match target 388 393

matches target 388 385

TOTAL 776 778

Table 4: Breakdown of matches to target term: peer
choice during interaction (main task).

the variable PEER MATCH TARGET notes whether the
peer (whether robot or human) matched the target term
during the collaborative task (see Table 4). This variable is
the crucial indicator of the presence or absence of influence
by the peer. The dependent variable is a TRUE or FALSE
variable, corresponding to whether the participant used the
target word during post-task responses.
We performed logistic mixed-effects regression, incorpo-

rating random intercepts for participants and items [19].
The model also incorporates random slopes: for each partic-
ipant, the slope is allowed to vary for PRE-TASK MATCH
TARGET and PEER MATCH TARGET, and for each item,
the slope is allowed to vary for PEER CONDITION. The
resulting model is summarised in Table 6.
The model indicates the following. First, matching the

target in the pre-task (PRE-TASK MATCH TARGET) is
a significant predictor of matching in the post-task. If a
participant was already using the target word in the pre-
task, he or she is likely to continue doing so in the post-
task. This result is unsurprising, but it represents a factor
that needed to be controlled to verify influence of the peer.
Secondly, as a general main effect, the peer’s use of the tar-

get term in the navigation phase (PEER MATCH TARGET)
is a significant predictor of matching the target during the
post-task. Thus, in both conditions, the robot or actor’s
choice of the target terms was likely to prompt use of this
term by the participant, after the peer interaction was com-
pleted. This main effect provides evidence of significant in-
fluence by the partner, in both robot and human conditions.

human condition robot condition

does not match target 528 591

matches target 248 187

TOTAL 776 778

Table 5: Breakdown of matches to target term: sub-
ject’s answer during post-task.

Thirdly, the influence of the navigation partner is stronger
overall in the human condition, compared with the robot
condition. This is evident from the interaction between
PEER CONDITION and PEER MATCH TARGET. This
interaction is shown in the effect plot of Figure 5. Note that
the peer condition (robot or human) is not significant as a
main effect in this model. This is not surprising because
the data for this model includes both cases where the peer
did, and cases where the peer did not, introduce a new term
during the navigation task. The difference between condi-
tions is evident only when the peer could have conceivably
prompted a switch to the target item, i.e., from the PEER
CONDITION and PEER MATCH TARGET interaction.

Figure 5: Interaction plot from the model in Table
6

4.3 Peer condition comparisons: Switching to
peer’s term

The foregoing analyses examine all participant responses
in the post-task, including cases where the peer did not exert
any relevant influence on word choice (that is, because the
participant was already using the same term in the pre-task,
and thus could not switch). We may perform even finer-
grained analyses by focusing only on responses where the
participant had a meaningful opportunity to change to the
peer’s word choice.

Thus we may ask: focusing on instances where the peer
introduces a term that is new to the participant, how often
does the participant switch to the new term? We consider
this question, first of all, as an average measure for each
participant. This measure is summarized in Figure 6, which
shows density plots of participant aggregates (grouped by
peer condition). This plot shows that overall, clearly it is
more likely for participants who are paired with a human
to switch terms, as compared to participants paired with
a robot peer. In the human-peer condition, participants
switch to their peer’s term on 61.12% of all opportunities
to do so (across participants, SD = 20.53). By comparison,
participants switch 38.92% of the time to a robot peer’s
term (SD = 18.65). This difference is statistically signifi-
cant (t(37.65) = 3.58, p < .001). However, it is notewor-
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Estimate Std.Error z value pval

(Intercept) -5.04 0.59 -8.51 < .001

PRE-TASK MATCH TARGET 3.15 0.48 6.62 < .001

PEER CONDITION = robot 0.84 0.63 1.34 0.18

PEER MATCH TARGET 5.23 0.69 7.57 < .001

CONDITION =robot* PEER MATCH TARGET -1.83 0.82 -2.22 0.03

Table 6: Regression model summary.

thy that much cross-participant variation exists within each
condition, and a considerable overlap exists across the two
conditions; see the double-shaded region in the middle of
the density plot. That is, there are some participants in
the robot-peer condition who switch terms more often than
some participants in the human-peer condition.

Figure 6: Cross-participant tendencies to switch to
peer’s term

4.4 Analysis 2: Switching terms, term likeli-
hood, and personality traits

Next, we perform additional regression analyses, focusing
only on the subset of the data where the participant had
the opportunity to shift to the peer’s term. In this analysis,
the dependent variable is a TRUE vs. FALSE response,
indicating whether or not the participant switched to a new
term introduced by the peer.
In this model, as one predictor, we again have the PEER

CONDITION (robot vs. human). Secondly, we have the
PRIOR PROBABILITY of the word introduced by the peer.
This measure represents how likely a particular word is as
a response to a particular image, as indicated by a popula-
tion of task participants. Specifically, to quantify the prior
probability of a term, we calculate how often this particular
response was offered by 58 participants in a pre-task. (This
group consists of the 40 individuals in the current study, plus
18 from a separate pilot study). Thus, for instance, for an
icon of a coffee cup, the prior probability of the word “cup”
is .379, since this proportion of 58 respondents volunteered
“cup”. For the same image, the word“mug”has a prior prob-
ability of .121. We predict that prior probability of a term
will give some indication of how appropriate, and how ac-
cessible, a particular label is for a given picture. Responses
that, in the population as a whole, are more probable in the

pre-task should be easier to prompt via peer influence as
individuals’ responses in the post-task.

As additional predictors, from the Big-Five personality
traits [23], we investigated the influence of two traits in the
task: Agreeableness, and Openness to experience. These
two traits are chosen since there are theoretical motivations
for a link between self-reported personality measures and
tendencies to imitate other social agents. “Openness”, as
an element of the Big-Five, is said to encompass a range
of linked personality traits, including curiosity and (most
relevantly for the present experiment) an affinity for variety
and novel experiences [23]. Previous research has shown that
participants who are more “open” are more likely to imitate
linguistic behaviours of their interlocutors [2]. “Agreeable-
ness” on the other hand, describes how cooperative/compli-
ant a person is, compared to quarrelsome/distrustful [20].
To acquire the Big-Five personality values we chose the TIPI
test [15]. This test is a simple, fast and valid assessment sys-
tem for the Big-Five which is not only used in the psychology
community but also by other robotics researchers [30].

We performed logistic mixed-effects regression, including
random intercepts for participants (random slope for PRIOR
PROBABILITY) and items (random slope for PEER CON-
DITION and OPENNESS). The best-fitting model is sum-
marised in Table 7. Agreeableness of the participant was
not found to be significant, and it is thus excluded from
the model. However, there were significant effects for PEER
CONDITION, PRIOR PROBABILITY, and the participant’s
OPENNESS.

In this model, we first note that PEER CONDITION pre-
dicts switching; participants who have interacted with a hu-
man peer are more likely to switch terms than participants
who interacted with a robot. Note that, in this model, peer
condition is significant as a main effect (not just as an inter-
action), since in this dataset, we have restricted our focus
to items where a peer-influenced switch could take place.

Secondly, we note that PRIOR PROBABILITY predicts
participants’ tendency to switch terms. Participants are
more likely to adopt a word which has a high prior prob-
ability of use. However, note that in the model, this PRIOR
PROBABILITY effect does not interact with PEER CON-
DITION. This suggests that the same kind of influence may
be at work in the robot condition and the human condition;
participants are more swayed by responses that are highly
common (and thus presumably highly suitable) responses.

Finally, we note that the “openness” of the participant
does not, as a main effect, predict the tendency to switch
to the peer’s term. However, this personality trait does in-
teract with PRIOR PROBABILITY in a sensible way. This
interaction can be visualised in the effect plot in Figure 7.
This plot shows that participants who are less “open” to new
experiences tend to carefully adhere to PRIOR PROBABIL-
ITY with respect to degree of influence; high-probability re-
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Estimate Std.Error z value pval

(Intercept) 0.55 0.30 1.86 0.06

PEER CONDITION = robot -1.21 0.37 -3.315 < .001

PRIOR PROBABILITY (item) 2.59 0.51 5.13 < .001

OPENNESS (participant) 0.25 0.18 1.36 0.18

PRIOR PROB * OPENNESS -0.94 0.42 -2.23 0.03

Table 7: Regression model summary: Tendency to switch to peer’s term.

Figure 7: Interaction plot for subject personal-
ity*item predictability

sponses are likely to trigger a switch, but low-probability re-
sponses are unlikely. However, participants who score higher
on OPENNESS are more likely to adopt all kinds of words
introduced by their peer; such participants switch to low-
probability terms in addition to high-probability ones. Inter-
estingly, there is no interaction with PEER CONDITION;
the personality trait seems to operate similarly whether the
navigation peer was a human or a robot.

5. CONCLUSION & IMPLICATIONS
In this work, our aim is to see if a social robot can influence

the word choice of a human interlocutor. We developed an
experimental design in which the robot/actor and the human
have to help each other proceed on a virtual game board.
Moreover, to show to what extent the robot can influence the
human, we created a pre-/main-/post-task experiment. By
comparing the pre- and post-task we can study the influence
of the robot. Furthermore, we are interested on how a social
robot compares with a human actor.
Regarding the questions asked in the introduction sec-

tion, whether social robots prompt lexical entrainment and
whether it persists, the answer is yes. The current experi-
ment proves that participants will shift their word choices to
be more similar to those of robot interlocutors. This result
supports previous lexical entrainment findings in a differ-
ent context [17, 18], but extends such findings further. The
current study measured effects separately from interactive
tasks, and the entrainment is thus not merely for commu-
nicative ease. It is important to note that the timescale
between the interaction with the robot and the measure-
ment was about 30 minutes. Whether this short-term per-
sistence also leads to long-term persistence is not yet tested
by us. However, studies by Garrod et al.[13] support the
notion that continued exposure and cooperation can lead to

changes, and shared linguistic conventions, in a network of
agents.

Looking at the influence of the robot compared to the
actor, we can say that the lexical entrainment is similar
under both conditions. However, as expected the robot’s
influence on humans was significantly weaker than the ac-
tor’s (human-human). The reason why this could be is that
robots might have a lower social status than humans. Fur-
thermore, humans might include more subtle and unrecog-
nised cues which were not repeated by the robot.

At this point, we should think about possible implications
of persistent language change prompted by social robots.
This is especially the case when we look at the sheer num-
bers of robots in development. We can consider, for in-
stance, indicators from sales per unit, where service robots
already overtook industrial robots. An overall purchase of
2.3 million units on industrial robots in the year 2011, com-
pared to 2.5 million units of service robots is already a real-
ity [38]. Second, the development can be observed in areas
where robots are planned to be introduced, like classrooms,
as help in offices, to work in sales, or as cleaners at home
[6, 9, 21, 31]. If, in any case, social robots gain traction like
service robots, and are used for all kinds of social interac-
tion, they might have enough “power” to affect the language
of a whole population. This effect is particular interesting
to study when institutions, for example Apple or Google,
provide the speech system for the robots. Any change such
an institution makes on their speech system will most likely
take immediate effect on all robots via updates. That means
that whoever provides the future speech systems for robots,
might hold the key for future language development in their
hands.
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