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Robots will dominate the use of our
language

Jürgen Brandstetter and Christoph Bartneck

Abstract
Robots are able to influence the usage of human language even after the interaction between the human and robot has
ended. Humans influence each other in the usage of words, and hence, the robots they program indirectly affect the devel-
opment of our society’s vocabulary. Most human–robot interaction studies focus on one robot interacting with one human.
Studying the dynamic development of language in a group of humans and robots is difficult and requires considerable
resource. We therefore conducted a social simulation of a human–robot communication network based on a real-world
human–human network, allowing us to study how the centrality of the robots’ owners influences the propagation of words
in the network and what influence the number of robots in the network has on achieving a fixation state. Our results show
that robots owned by highly connected people have less effect on the dynamics of language than robots owned by less con-
nected people. Highly connected people interact with many others and therefore are more strongly influenced by a greater
number of people and their robots. We have found that 11% of the humans owning a robot is sufficient for the robots to
dominate the development of the language resulting in 95% of the humans using or adopting their words.
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1. Introduction

As spoken language is such an important part of human
communication, researchers want to understand how its
vocabulary spreads through the population, how it
changes over time and how it affects people. One way of
studying such dynamic behaviours is by computer simu-
lations. The general idea of using simulations to under-
stand the dynamics of language change is not new. Steels
(1995), for example, used such simulations in 2006, and
Baxter, Blythe, Croft, and McKane (2009) showed the
usefulness of simulations for the study of language
change. However, over the years, the simulations have
become more complex and include more and more para-
meters. For example, Pierrehumbert, Stonedahl, and
Daland (2014) developed a simulation that included
many different human biases and learning rates. Most of
these simulations focused on human–human interaction.

Robots and other speech-enabled technology are
expected to dramatically expand their presence in our
society. It is therefore necessary to include robots in
simulations of the development of language. Robots
have characteristics that are fundamentally different
from human speakers, such as their ability to

communicate through the Internet instantaneously with-
out the human speakers noticing. They would be able to
update their vocabulary within seconds. Moreover,
robots can be completely consistent in the use of their
language. To be able to study the effect of robotic com-
munication partners, a new simulation model needs to
be developed.

Such new simulations need to consider the technolo-
gical abilities of robots. Open questions include what
happens when robots are connected to the cloud? Will
they just use the cloud as storage or will they synchro-
nise with each other? Should the synchronisation be
limited to the robots owned by a single person or fam-
ily? Or will all the robots in the world synchronise with
each other? The latter scenario opens further questions
about how the companies providing cloud synchronisa-
tion services deal with the information they receive
from the people using the robots. These questions do
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of course go beyond what this study can achieve, but
we believe that it is necessary to start asking these ques-
tions in this age of sharing our most private moments
and even thoughts with companies such as Facebook
and Google.

As mentioned above, humans adapt their language to
each other. For a new word, such as ‘to google’, to gain
general acceptance it needs to gain a critical mass of users
which may take years. Robots, on the contrary, can
update their vocabulary through the Internet within a
fraction of this time. Even though a future where robots
learn words from humans and ‘tell’ them to other robots
might exist at some point, at this point in time, as far as
we know, no widespread voice-activated device or system
learns new words by itself. The so-called ‘learning’ is only
used when a user clearly states that the device should use
another word for an object. For example, one can tell
Siri to change the name of the owner. This adaptation
remains local, and any other update or adaption is done
by the company providing occasional updates to the dic-
tionary and pushing it to the robots. This update pattern
of getting updated by a centralised system will be the
base for the robots in this study.

From the work of Brandstetter, Beckner, Sandoval,
and Bartneck (2017), we learnt that robots are able to
influence the words humans use. This influence was
shown to last even after the completion of the interac-
tion between the humans and the robots. Furthermore,
they showed how much influence a robot and a human
have on their communication partners. This knowledge
of a one-to-one interaction, however, does not tell us
much about the overall influence robots might have
when many of us own robots and constantly communi-
cate with them.

We therefore developed a social simulation to
explore the dynamics of how robots can influence the
use of language in a mixed human–robot communica-
tion network. It is important to node that each owner
of a robot is linked to a single robot note and that the
robot node is only linked to its human owner. The
robots can, however, talk to an Internet server instan-
taneously (see Figure 1). This network design resembles
the most likely scenario in which we have robots in our
home that mainly talk to their owners but rarely to
other humans in the network. Such social robots are
already available in the market. Future scenarios may
include robots that are able to also operate outside the
home and even go shopping for us. But such a usage
scenario is still more fiction than science. We will there-
fore focus on a network design that is likely to repre-
sent human–robot interaction in the upcoming decade.

Some users in the human network will own a robot,
and the characteristics of these owners might have an
influence on how effectively the robots influence the
dynamics of the language. These robot owners can be
considered ‘influencers’. Marketing experts have long
discovered that ‘influencer marketing’ is a powerful

tool to influence the market (Gillin, 2009). Influencer
marketing has caught the public attention as it is visible
from Google Trends (see Figure 2). The idea behind
influencer marketing is to find out who are the influen-
cers in the society or group and manipulate them spe-
cifically. New tech tools, for example, are given to
famous tech bloggers who in turn report on them. If
these bloggers can be persuaded to like a product, their
followers are more likely to like it too and maybe even
buy it (Pavlika, 2016). This phenomenon is common
not only for bloggers but also with social media influ-
encers on Instagram or Snapchat, which in return has
sparked specific influencer marketing companies like
‘The Social Club’

1

that focuses on identifying the influ-
encers and forming marketing relationships with them.

In recent times, the company Lord & Taylor used
influencer marketing to sway fashion bloggers. They
managed to make 50 fashion bloggers wear the same
dress and show them to their audience, and as hoped,
the dress sold out quickly (Griner, 2015). In comparison
with a traditional advertisement that addresses a wider
audience, influence marketing focuses on a very selec-
tive target group (Griner, 2015; Hall, 2016; Talavera,
2015).

It is a nontrivial task to find out who are the major
influences in a social network/community. However,
the most common strategy to find influential nodes is

Figure 1. Basic human–robot network graph. Circles represent
humans and squares robots. The diamond is the master server.
The connecting lines indicate communication channels. A human
can communicate only with one robot or with other humans.
Robots communicate with the human and the main server.

Figure 2. Google Trends on the term ‘influencer marketing’.
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called ‘centrality measurements’ (Liu, Xiong, Shi, Shi,
and Wang, 2016; examples of centrality measures are
Closeness-Centrality, Betweenness-Centrality, Page-
Rank). In most of the centrality measurement types,
node properties like the number of connections a node
has and how often one crosses a node when travelling
from one side of the network to the other are used to
measure the importance of nodes. With that knowl-
edge, very specific nodes can be targeted and their selec-
tion might influence the dynamics of the language.
Depending on the centrality of the robots’ owners, the
persuasive power of the robot might change. A robot
owned by a highly connected human speaker might
exert a stronger influence on the development of the
language compared with a robot that is owned by a less
well-connected human speaker, meaning that decision
of a well-connected human speaker to adopt a certain
word in the Naming Game makes others change to the
same word.

The persuasive power of the robots might depend
not only on the characteristics of their owners but also
on their quantity. If the majority of the humans own a
robot, then the robots might be more influential com-
pared with when only a handful of users own them.

During many simulations, observations and experi-
ments (Baronchelli, Gong, Puglisi, & Loreto, 2010;
Blythe & Croft, 2012; Castellano, Fortunato, & Loreto,
2009, p. 595; Cangelosi & Parisi, 1998; Centola, 2010,
p. 1194, 2013, p. 6; Centola, 2010, p. 1194; Centola &
Baronchelli, 2015; Fagyal, Swarup, Escobar, Gasser, &
Lakkaraju, 2010; Lu, Korniss, & Szymanski, 2008,
2009), it became clear that the development of language
within a network follows three stages (see Figure 3).
These stages split an S-curve function into three
regions. The first stage is the innovation or emergence
stage, where a new word finds its critical mass. In this
stage, individual speakers need to find like-minded oth-
ers to form a critical mass (Centola, 2013, p. 6). In the
second stage, called the diffusion, selection or propaga-
tion stage, the minority starts to become a majority and
the social pressure to switch to the new form increases.
The final and third stage is the Fixation Stage. During
this stage, the previous minority is now the majority
and the new word becomes the standard form, until, of
course, a new minority emerges and overthrows the old
one (Fagyal et al., 2010). The question is what role the
robots may play in achieving such a fixation state.

2. Research questions

In summary, we are interested in the following research
questions:

Q1. How do the centrality characteristics of the robots’
owners influence the dynamics of the language and the
resulting persuasive power of the robots?

Q2. How does the start rank calculated by the central-
ity measures influence the dynamics of the simulation?
Q3. How many robots are needed to get the language
used in the network into a Fixation Stage?

3. Literature

This section will describe the two major research areas
upon which the experiment is build: The Naming Game
and Graph Knowledge.

3.1. Naming Game

The so-called Naming Game is a well-studied linguis-
tics experiment developed by Baronchelli, Felici,
Loreto, Caglioti, and Steels (2006). Its goal is to see
how people influence each other’s language. More spe-
cifically, it looks into the propagation of a new word
through a network of people. The game itself has been
explored in areas of simulation as well as experiments.
A great overview of the Naming Game and all its dif-
ferent implementations, experiments and attributes can
be found in the excellent ‘Statistical physics of social
dynamics’ paper by Castellano et al. (2009).
Furthermore, different network topologies were
explored. One of the reasons the Naming Game is a
favourite for such simulations is its simplicity
(Baronchelli et al., 2010; Beuls & Steels, 2013; Centola
& Baronchelli, 2015; Lu et al., 2008, 2009; Xie et al.,
2011).

The basic principles of the Naming Game are that all
nodes in the network have to find an agreed name for
the same object, noting that there is only this one object
present in the game. Each conversation has exactly one
speaker and one listener, and each node can be both a
speaker and a listener. Each node has a dictionary of
words that he or she or it will use during the conversa-
tions. When a speaker has no applicable word in his or
her or its dictionary for the object, he or she or it will

Figure 3. A consensus-building process follows an S-curve that
can be separated into innovation, selection and fixation sections
(Fagyal et al., 2010, p. 2).
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generate a random word and add it to his or her own
dictionary and tell it to the listener. If the listener does
not recognise this word (failure), he or she will add it to
its own dictionary, but if he or she or it recognises the
word (success), the listener and the speaker will both
forget all other words except the one word both know
(to see how a successful and failed game look like, see
Figure 4).

To choose a speaker/listener pair from the network,
the following approach is used. First, any random node
from the network is chosen to be a speaker. Second,
one of the speaker’s neighbours is randomly chosen to
be the listener. With this selection process, each node
has an equal chance to be a speaker; however, depend-
ing on the connections of a node, some nodes will listen
to more speakers than others.

3.1.1. Naming Game adjustments. As the Naming Game
is in our experiment played not only between humans
but also between humans and robots, we had to adjust
the behaviour when humans and robots communicate
with each other. Thus, we have made two changes.

First, we adjusted the update rule of the robots so
they behave differently to humans. The robots are
assumed to be connected to a central server through the
Internet, and their vocabulary remains static until an
update is pushed to them from the server. Once a new
word has entered the collective vocabulary, it remains
in there. This results in an extremely consistent beha-
viour for all robots as they will all continue to use the
exact same word. To model this behaviour in the
Naming Game, we changed the update rule so that in
case a robot is a listener, it will not add the new word it
hears from the human to its dictionary. We refer to the
robot’s behaviour as being ‘consistent’ and for the
remainder of this chapter will refer to it as such. The
consistent behaviour of the robots leads to them only
ever using the exact same word, which we refer to as the
robots’ word. Our simulation did not examine how the

frequency of vocabulary updates influences the devel-
opment of the language in the simulation. The simula-
tion is based on a static vocabulary for all robots.

Second, we adjusted the update rule of the humans
when adding new words to the dictionary. In the origi-
nal Naming Game, every success will remove all previ-
ously known words except the success word. But we
have learned from Brandstetter et al. (2017) that the
influence by humans and robots is not equal. More spe-
cifically, the influence of a human towards an other
human is 61.12% with a standard deviation of 20.53,
whereas the influence of a robot towards a human is
38.92% with a standard deviation of 18.65.

To incorporate that into a success situation, we
changed the update rule as follows. When a listener
hears a word from a robot or human, he or she accepts
that word according to the probability just lined out. If
he or she does not accept it, he or she will simply add
the word to the dictionary instead of replacing all words
in the dictionary.

3.2. Graph Knowledge

In many cases where human-made systems are simu-
lated, an underlying network structure exists
(Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006;
Newman, Barabasi, & Watts, 2011). For example,
transportation is built on a network structure called a
street network. Companies or friendships can be
mapped as social networks. Facebook and Twitter are
based on such social networks. Depending on the net-
work structure and how nodes communicate with each
other, changes in the network can have different out-
comes depending on its structure. For example, if we
knew that a plague had broken out in New Zealand,
we could cut the network connections. In this case, we
would cancel all trips from and to New Zealand to pre-
vent the spread of the plague to the rest of the world.
As New Zealand is an isolated island, cutting its con-
nections is easy and a spread could be relatively easily
stopped. If such a plague occurred in Central Europe,
it might be impossible to contain it.

As mentioned above, one of the goals of this study
is to understand how the properties of the robots’ own-
ers in a graph/network affect the communication in the
network. To understand network properties of robot
owners, we need to have a look at graph properties and
position properties, such as centralities (Barrat,
Barthlemy, Pastor-Satorras, & Vespignani, 2004). A
simple graph generally consists of two types of ele-
ments: a node and a link, also called a vertex and an
edge (see Figure 5 for an image of a simple graph). A
typical graph, which all social beings experience, is the
social network they live in. In this network, the nodes
represent humans, and the links represent the relation-
ships between them.

Figure 4. Naming Game when only humans talk to each other.
Image taken from Lu et al. (2009).
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When one wants to influence other nodes in a graph,
it is important to know how much influence each node
in the network can have. This influence can be mea-
sured by calculating how many steps each node is away
from other nodes and by seeing how well-connected
each node is. In Figure 5, we see that it takes in the opti-
mal case three steps to go from node 1 to node 6.

To define how much influence a given node has, we
use centrality measurements. A centrality measure
assigns every node in the network a number of influ-
ence. Let us look at an example for a simple network
to understand how these measurements are calculated.
Looking at Figure 5, we can see that some nodes are
closer to other nodes and some are farther away. We
can now measure how many steps it takes from one
node to another node. Table 1 shows how many steps
it takes from any node in the network to any other
node, by using the shortest distance between any two
nodes. From that, we can see that node 5 is only seven
steps away from all other nodes, whereas node 6 is 11
steps away from all other nodes. That gives node 5 the
highest centrality rank and node 6 the lowest rank. We
can now sort all nodes by their centrality rank, which is
5, 4, 3, 2, 1, 6. Further down in our experiment, we will
use the centrality rank as start position to whom owns
a robot. To do so, we use percentiles. For example, the
0% percentile means that people own robots by start-
ing at node 5. When using the 25% percentile, people
start owning a robot at node 3. So, if we want to assign
three robots and our start position is the 25% percen-
tile, then nodes 3, 2 and 1 will get a robot assigned.

In the previous example, we have used a very primitive
way of calculating the centrality rank; however, depend-
ing on the type of centrality measure, the same nodes can
be assigned a different centrality rank. The centrality
measurements used in this study are Closeness-Centrality,
Betweenness-Centrality and Page-Rank, and the follow-
ing sections will show and describe how those measure-
ments work. The reason why we chose those three types
of centrality measures comes from the fact that first they
are well established and tested measures (Liu et al, 2016).
Second, their results of assigning ranks to nodes are dif-
ferent from each other. And finally, NetLogo, as the tool
of choice, can only deal with the following four types –
betweenness, eigenvector, page-rank and closeness –
whereby, eigenvector and betweenness do not show big
enough difference in assigning ranks to nodes.

The following will describe how the centrality is
measured and what is needed to do so. First, we need
to define the graph and functions we use. A graph is
defined as G : =(V ,E), where V are all the vertices
(nodes) and E are all the edges (links) (Hatfield,
Cacioppo, & Rapson, 1993; Page, Brin, Motwani, &
Winograd, 1998; Sabidussi, 1966a). Next, we define
d(y, x) as a function that describes the shortest distance
between one node (x) and another node (y), that is,
how many steps it takes from node x to node y.

3.2.1. Betweenness-Centrality. Betweenness-Centrality
describes how often a node x is used for the shortest
path (d(s, t)) between all nodes (s) to all nodes (t). We
can describe the total number of shortest paths (d(s, t))
between s and t as sst =

P
d(s, t), and the number of

shortest paths between s and t that go through x as
sst(x)=

P
x2d(s, t) d(s, t). The Betweenness-Centrality is

described as g(v)=
P

s

P
t (sst(v)=sst) (Freeman,

Borgatti, & White, 1991).
When using Betweenness-Centrality in an applica-

tion, this information can be used to see how often a
node x can influence information travelling from node
s to node t. The colours in image 1 in Figure 6 show a
visual representation of nodes with a high to low
Betweenness-Centrality rating.

3.2.2. Closeness-Centrality. Closeness-Centrality describes
how many steps it takes a node x to reach all other
nodes. Each new measurement is started from point x.

Table 1. A table of the shortest distance from one node in network 5 to each other node.

Node 6 5 4 3 2 1 Sum

6 0 2 1 2 3 3 11
5 2 0 1 2 1 1 7
4 1 1 0 1 2 3 8
3 2 2 1 0 1 2 8
2 3 1 2 1 0 1 8
1 3 1 2 2 1 0 9

Figure 5. Simple undirected graph.
Author: https://en.wikipedia.org/wiki/User:AzaToth
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We can describe the Closeness-Centrality for node x as
C(x)= 1=(

P
y d(y, x)), where y is every node in the

graph. When we do this for each node in the graph, we
can see which one has the shortest distance to all other
nodes (Sabidussi, 1966b). The colours in image 2 in
Figure 6 show a visual representation of nodes with a
high to low Closeness-Centrality rating.

3.2.3. Page-Rank. The Page-Rank measure is based on
the idea that links that point to an observed node
describe the importance of the observed node. But
instead of simply counting the connections a node has,
Page-Rank takes into account how many connections
the nodes it is connected to have. Figure 7 shows how
the rank of a node influences the rank of a neighbour-
ing node.

Let us define Bu as the sum of nodes pointing to u

and Nu the sum of nodes u point to. The rank of a node
R(u) is then described as R(u)=

P
v2Bu

(R(v)=Nv) (Page
et al., 1998). It is important to note that the Page-Rank
approach is recursive and will eventually stabilise itself.
The colours in image 3 in Figure 6 show a visual repre-
sentation of nodes with a high to low Page-Rank
rating.

3.3. Network structure and the Classroom Network

When running experiments where consensus building
has a strong focus, it is important to also look at the
network that is used during the process. Centola and
Baronchelli (2015) studied how a consensus-building
process can look like and how the network structure
influences it. For example, when playing the Naming
Game, the network can end up in one of three stages.
First, the whole network agrees on a common word.
Second, no consensus is found at all and speakers learn
and forget words all the time. Third, regions of syno-
nyms stay in place, and only speakers at the borders of
the regions learn and forget words over time. Figure 8
visualises what this can look like.

To find out why some words are accepted by the
whole network and some are only used in some regions,
as mentioned above, Centola and Baronchelli (2015)

Figure 6. Colour-coded centrality ranks of the ‘Classroom Network’ network. Red means high centrality value and blue means
low centrality value. (a) Betweenness-Centrality, (b) Closeness-Centrality and (c) Page-Rank.

Figure 7. An example of node ranks according to the Page-
Rank centrality measure (Page et al., 1998).

Figure 8. A network that establishes a consensus over time:
(a) many clusters with no overall consensus, (b) Regional
consensus starts to develop (c) two major clusters with some
nodes accepting both words/idea (Lu et al., 2008) and (d) Full
consensus in the whole network is established.
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looked at the network topology for a cause. In their
experiments, they used three different topologies of net-
works: a spatially embedded network, a random net-
work, and a homogeneously mixed network (see
Figure 9). Through this experiment, they were able to
show that network topology had an effect: The

homogeneously mixed network found a full consensus
in which over time everyone used the same word; the
random network found no consensus at all, and the
spatially embedded network was found to form regions
of words.

As we have learnt that the network topology has an
effect on the outcome of the experiment, it is important
to use an accurate social network. To get to this net-
work, we have two choices: first, using a model that
can create social networks, like Watts and Strogatz’s
small world networks model (Watts & Strogatz, 1998),
or using an observed real-world network. Our choice
went to a real-world network called the ‘Classroom
Network’ (Stehlé et al., 2011). This network is available
online

2

and can easily be imported into simulation soft-
ware. The Classroom Network itself describes a full
day of interaction amongst the students of 10 school
classes. The network has jV j= 236 nodes (members),
and the sum of all connections is jEj = 5899. The total
count of communications between any two nodes is
also known and sums up to 37, 351 contacts per day
(Stehlé et al., 2011). The structure of the network can,
among others, be seen in Figure 10.

The advantage of this network is that it is based on
real-world observations which gives our simulation a
high ecological validity. The results of our simulation
are therefore more applicable to the real world.
Artificial networks are able to generate more extreme
and biased networks that might be useful to test some
questions, but the network structure itself was not in

Figure 9. Spatially embedded and homogeneously mixed
networks (Centola & Baronchelli, 2015).

Figure 10. The user interface with the Classroom Network loaded.
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the main focus of our study. Moreover, it is difficult to
transfer the results of simulations done on artificial net-
works back onto reality.

4. Experimental setup

To find out in what situations the robots are most effec-
tive, we have divided the experiment into two stages. In
the first stage, we compare different centrality measure-
ments (Betweenness-Centrality, Closeness-Centrality
and Page-Rank) against each other and against ran-
domly owned robots. In stage 2, we explore how the
connectivity of humans and robots within the network
influences the robots’ power to sway humans to use the
robot’s word.

Stage 1: In this stage, we distribute the robots accord-
ing to one of the three centrality measures,
Betweenness-Centrality, Closeness-Centrality and
Page-Rank, or Random. The centrality types are used,
first to find the best to least connected human in the
network (see section ‘Graph Knowledge’ on how to
rank nodes according to centrality measures), and then
in assigning the robots deterministically from the best
connected humans on upwards. We also change how
many humans own a robot, which can be 0% (only
humans), 3%, 6%, 9%, 11%, 26%, 44% and 85%. It
is important to mention that the number of humans
never changes. Only the number of robots owned by
humans can change.
Stage 2: In this stage, we change the start position of
the centrality rank calculated for stage 1. While in
stage 1, we allocated the robots deterministically from
the human with highest centrality rank (0% percentile)
to lowest centrality rank (see section ‘Graph
Knowledge’ on how to rank nodes according to cen-
trality measures). In this stage, we used different start-
ing points: the 0%, 25%, 50% and 75% percentile of
the ranked nodes (e.g. the 50% percentile means the
person who is in the middle between the highest and
lowest ranked nodes).

4.1. NetLogo

To develop our simulation, we chose NetLogo, which
is a special agent-based simulation framework devel-
oped by the Northwestern University (Wilensky, 1999).
The idea behind NetLog is to give the researcher all the
tools necessary to simulate agent-based models such as
birds flocking, traffic movement and communication
between people. It provides the researcher with func-
tions like generating networks, loading network files,
calculating centrality measures, exporting results, auto-
mating different simulation settings and visualising the
network effect. To run simulations with huge datasets,
NetLogo also functions in a headless mode. This mode

provides the same functionality but can be run on the
command line and without a graphical user interface to
allow running multiple settings simultaneously on mul-
tiple machines. In the case of this experiment, we used
six computers to divide the workload, therefore having
a speed-up of about six times.

4.1.1. NetLogo setup. To run our simulation with
NetLogo, we had to implement our own setup, which
is based upon scripting NetLogo and using user inter-
face elements to support different test parameters (see
Figure 10 which shows a screenshot of how our simula-
tion setup looks like). In total, three major parameters
are used to run and change our simulation: the
Centrality parameter, the Robot Starting Point para-
meter, and the Number of Robots parameter. All para-
meters get adjusted during the different simulation
runs. Other parameters such as the robot/human
update rule are fixed and implemented as described in
the ‘Naming Game Adjustments’.

Centrality parameter: With the ‘Centrality’ parameter,
the type of centrality (Betweenness-Centrality,
Closeness-Centrality, Page-Rank or Random) used to
distribute the robots can be selected.
Robot Starting Point parameter: The ‘Robot Starting
Point’ parameter describes the centrality rank percen-
tile at which the human will own a robot. For example,
if the rank is 0%, then the starting point is at the high-
est rank (0% percentile). If the rank is the 50% percen-
tile, the starting point is at the middle. For a more
detailed description on how the ranking via centrality
works, look at section ‘Graph Knowledge’.
Number of Robots parameter: The ‘Number of Robots’
parameter describes what percentage of humans will
own a robot: 0% means no robots at all and 50%
means every second human owns a robot.

4.1.2. Running the simulation. When running the simula-
tion, our NetLog setup sets up the network properties
and then runs the simulations until every human in the
network is using the same word or multiple words keep
existing, and saves the measured points for each run.

It is important to understand that each run of the
simulation can have a slightly different outcome. This
unpredictability comes from the fact that each agent is
randomly picked. To actually draw a conclusion from
the simulation, each simulation must run multiple
times. And as a final step, the average of all simulations
is taken to draw a conclusion.

Initialization: Before any decision for the distribution
of robots is made, the Classroom Network is loaded as
an undirected network with 236 nodes (N = 236).
Next, the robots are distributed according to the rules
of stages 1 and 2.
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Run: During the run step of the simulation, NetLogo
will follow these phases: First, one random node from
the whole network is picked. This node will be the
talker node and can be a human or a robot. Second,
one of the talkers’ neighbours is randomly picked.
Again, the neighbour can be a human or a robot and is
the listener node. Third, the talker selects a word
according to the Naming Game rules and tells it to the
listener. Finally, the talker and listener will update their
internal dictionary according to our adjusted Naming
Game rules (see section ‘Naming Game Adjustments’).
After all four phases are over, the program will start
from the beginning. This will go on until all human
nodes in the network use the same word, or if multiple
words keep existing. The simulation will end at itera-
tion number 100,000. To get a visual perception of
how the network changes during different steps, see
Figure 11. To see what the different centrality measures
look like, see Figure 6.
Saving Data: To measure the effect of the robot during
the interaction and not just the end result, we have
added some measurement points. First, the program
measures how many steps it took to finish each run,

meaning when all humans used the same word. Next,
the distribution of the robot word in percentage for the
1000th, 2500th, 5000th and 37,351th steps is measured,
as well as measuring the particular step at which the
human decided to use the same word (this does not
have to be the word introduced by the robots). In total,
each setup ran 6000 times. For example, if 6% of all
humans have robots and Betweenness-Centrality is
chosen to distribute the robots, combining all possibili-
ties we have 32 cases, which ends up having to run
192,000 simulations.

5. Results

Our first question (Q1) was to find out if different cen-
trality measures have a different effect on the robots’
power to sway humans to the robot’s word. For that,
we compared the three centrality types (Closeness-
Centrality, Betweenness-Centrality and Page-Rank)
with each other and with the random setting (stage 1).
Figure 12 shows a plot of a snapshot of all types after
1000 steps and when the simulation ended.

Figure 11. The distribution of the different words after 100, 4000 and 7500 iterations when having 11% of robots in the network:
(a) after 100 iterations, (b) after 4000 iterations and (c) after 7500 iterations. The square dots represent robots.

Figure 12. Difference between the three centrality types and random: (a) snapshot after 1000 iterations and (b) snapshot after the
simulation ended.
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We performed an analysis of variance (ANOVA) in
which the centrality type was the independent variable
and the distribution rate of robot word after 5000 itera-
tions was the dependent variable. The plots already
reveal what the ANOVA confirmed. We could not mea-
sure any significant F(3, 191, 996)= 307, p\:001ð Þ
difference between the centrality types (see Table 2).
The residual was min= � 65, median= 24 and
max= 41.

We suspected that the reason for not having a statis-
tical significant difference between the three centrality
types is that each centrality type assigns similar ranks
to the nodes. For example, the person with most con-
nections will have highest rank in all three types. To see
whether our hypothesis is correct, we used a Granger
causality test. The test showed that there was no signifi-
cant difference between the ranks in any two centrality
types (Betweenness-Centrality vs Closeness-Centrality:
F(� 1, 233)= 0:3095, p\:5785; Closeness-Centrality
vs Page-Rank: F(� 1, 233)= 0:3025, p\:5829; Page-
Rank vs Betweenness-Centrality: F(� 1, 233)=
0:0078, p\:9297).

However, through a visual inspection, we noticed a
difference between the random setting and the three
other settings. Looking at our Figure 12, we could see
that the random setting was consistently stronger than
the other settings. This effect was not statistical signifi-
cant, but it hints at a potential follow-up study.

Our second question (Q2) was to find out whether
changing the start rank calculated by the centrality
measures would change the dynamics of the simulation.
Looking at the results of this simulation, we can see in
Figure 13(a) that the different starting points indeed
have an effect. This effect is also supported by an
ANOVA F(3, 20, 962)= 1151, p\:001ð Þ. For the
ANOVA, we look at a setting with 11% of robots and
the robot word rate of 5000. Of special interest is that
low centrality ranks create a stronger effect, meaning
less well-connected nodes have greater effect.

Next, we have a look at the random effect and the
centrality starting position to see whether the random
effect is still more effective when we move the centrality
starting point. When looking at the following two
graphs of Figures 14 and 13a where 9% of all humans
have a robot, at the centrality position of 50%, the
Betweenness-Centrality had the same effect as the

random condition (45% vs 45%). However, at the cen-
trality position of 75%, the Betweenness-Centrality sur-
passed the random condition (55% vs 45%).

In our third question (Q3), we wanted to know how
many robots are needed to get into the Fixation Stage.
To analyse this, we will have a look at the comparison
of humans only versus humans plus robots. In Figure
15, we can see that the adaption follows in both cases
an S-curve. However, it is clear that the introduction of
robots accelerates the adaption rate.

Figure 12(b) shows that eventually all humans will
use the robots’ word as long as at least 9% of the
humans own a robot. If fewer robots are available, then
the network does not end in a fixation state determined
by the robots. If more than 11% of robots are avail-
able, the robots’ word will always be adopted by 90%
of all humans. A more context-oriented analysis can be
drawn by looking at Figure 13(b). This figure is a snap-
shot at iteration 37,351, which is the amount of com-
munications the people in the classroom-network had
during one day. It shows again that 11% of humans
need a robot so that all humans use the robot word in
the end. Changing the start position to the 45% percen-
tile or higher will result in only 9% of robots needed to
get into the Fixation Stage.

6. Discussion

In this study, our main goal was to find out whether
robots could manipulate humans to use the robots’ cho-
sen word. This manipulation was effectively achieved
by making the robots consistent, so that all robots
would always choose the same word for a particular
object. The study uses the idea of Baronchelli et al.
(2006), who created a linguistics game called the
Naming Game to study how language develops, to see
how effective robots are and how positioning them in a
network affects their power to sway humans to use their
word. We chose to simulate a game based on a real-
world network called the Classroom Network (Stehlé
et al., 2011), and to generate a plausible result, we
adjusted the update rule of the Naming Game with the
data of language manipulation gathered in Brandstetter
et al. (2017).

In our first question (Q1), we wanted to know how
positioning robots according to the different centrality

Table 2. ANOVA between the three centrality types and random that measured how high the robot word rate was at 5000
iterations.

Estimate SE t value p value Mean SD

Betweenness-Centrality 59.1216 0.1929 306.455 \2e� 16 67.57 38.642
Closeness-Centrality –0.4284 0.2728 –1.570 0:116 67.08 38.641
Page-Rank –0.3378 0.2728 –1.238 0:216 67.18 38.71
Random 6.4982 0.2728 23.818 \2e� 16 75.00 35.80
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measurements influences the dynamics of the simula-
tion. In the first simulation setting, we always started
with the human with the highest centrality value, that

is, the person who is best connected. When we com-
pared the three centrality types, we could not find a sig-
nificant difference. This comes from the fact that all

Figure 13. Betweenness-Centrality and random distribution starting at ranks 0, 25, 50, 75: (a) stage 2 setting, at iteration 5000, and
(b) stage 3 setting, at iteration 37,351.

Figure 14. Centrality snapshot of maximum 9% of robots, at
iteration 5000.

Figure 15. Humans only compared with 9% of robots with
start position at 75% percentile.
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three centrality measures chose similar nodes as the
most influential one in the network. From that point
on, we discarded two types and only used Betweenness-
Centrality to rank the nodes in the network. More
interesting than the comparison of the three centrality
types is that the random setting does not only seem dif-
ferent; it seems to have a stronger effect than the other
three centrality types.

In our second question (Q2), we wanted to know
whether the start position of the centrality measure had
an influence on the robots’ power to sway humans to
use the robot’s word. As Q1 showed that there was no
difference between the three centrality types, but there
was a difference between the random setting, we decided
to run the simulation with different start positions.

After the analysis, we could indeed see a significant
difference between the centrality start positions: The
lower the rank of a person in the network, the stronger
the effect of the robots. This somewhat counterintuitive
outcome might come from the fact that highly con-
nected nodes also have more people influencing the
node itself. That means that a person with a smaller
personal network gives each connection a higher prior-
ity, and therefore, a robot connection has more weight
for a less connected person than for a highly connected
person. This conclusion also shines light on the fact that
the random distribution in Q2 was consistently stronger
than when giving the robots to the strongest nodes.

This explanation is also in line with the linguistic
knowledge of convention building. It turns out that
new words tend to come from the less connected peo-
ple, and highly connected people tend to adjust
(Pierrehumbert et al., 2014). The explanation for this is
again that highly connected people hear more options
for the same word or idea.

In our last question (Q3), we wanted to know how
many robots (in percentage) were needed to get into
the Fixation Stage (where more than 90% of humans
use the robot word). Our analysis showed that only 9%
of robots in the network are needed to have a good
chance to be able to achieve the Fixation Stage when
the starting position is higher or equal to the 50% per-
centile centrality rank position. But when the robot
count is higher than 11%, the robots most likely reach
the Fixation Stage no matter at what centrality rank
position they started. In Figure 13(b), the effect can be
seen after 37, 351 steps, which is the communication
count measured in the Classroom Network. Given the
considerable penetration of smartphones in our society

3

that is well above 9% and that do already talk to users
through their voice agents, it is easy to see what impor-
tant role machine speakers will play. Smartphones will
lead the way and robots are likely to extend their influ-
ence. Machines will have an influence on the develop-
ment and usage of our language. Let us hope that they
will not force us into a ‘Newspeak’ (Orwell, 1949), as
political ‘Bots’ are already known to influence the

public opinion (Forelle, Howard, Monroy-Hernández,
& Savage, 2015; Howard & Kollanyi, 2016; Suárez-
Serrato, Roberts, Davis, & Menczer, 2016).

In conclusion, notwithstanding factors like bias, dis-
tribution and awareness that must also play a role, it
can be said that when there are enough robots, putting
those robots in the hands of the ‘right’ people will result
in a very good chance that the humans will adopt the
robots’ words.

7. Future work

As we have completed our study on the Classroom
Network, it would now be interesting to see whether we
would get similar results using other networks. Testing
this with other real-world networks would still be pre-
ferred over artificial networks.
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Notes
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