DGB03 Introduction Design Research

Set Up of Studies

Ilse Luyk (i.m.luyk@tue.nl) 22-04-09

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

- The research variables
- The research design
- Sample versus population

Reference: Research methodology – a step-by-step guide for beginners, Ranjit Kumar, 2005

The research variables

- The research design
- Sample versus population

The research variables: Opinions

Opinions about the iPhone:

Concepts versus variables

Concept is a mental image or perception

Subjective Impression-No uniformity of understanding-Not measurable

TRANSLATION

Variable is a property that takes on different values

Measurable but degree of precision varies

Concepts versus variables: exercise

Success iPhone Success iPhone Sales number

Types of variable

Different variable classifications:1.The causal relationship2.The unit of measurement

Types of variable: the causal relationship

Types of variable: unit of measurement

Categorical			Continuous
Constant	Dichotomous	Polytomous	
1 value	2 values	> 2 values	
water tree taxi dog 	yes/no good/bad rich/poor day/night male/female hot/cold 	political parties - labor - liberal - democrat income - high - middle - low 	income (\$) age (years) weight (kg) temp. (°C)

Variables: measurement scales

4 types of measurement scales:
1.Nominal or classificatory scale
2.Ordinal or ranking scale
3.Interval scale
4.Ratio scale

Nominal or classificatory scales

A nominal scale enables the classification of individuals, objects or responses based on a common/shared property or characteristic

10

/ Industrial Design

Ordinal or ranking scales

A ordinal scale enables the classification of individuals, objects or responses based on a common/shared property or characteristic and it ranks the subgroups in a certain order.

Interval scales

An interval scale enables the classification of individuals, objects or responses based on a common/shared property or characteristic and it ranks the subgroups in a certain order.

It uses a unit of measurement that enables the individual responses to be placed at equally spaced intervals in relation to the spread of the variable.

12

22-04-09

/ Industrial Design

Ratio scales

An interval scale enables the classification of individuals, objects or responses based on a common/shared property or characteristic and it ranks the subgroups in a certain order. It uses a unit of measurement that enables the individual responses to be placed at equally spaced intervals in relation to the spread of the variable.

The zero point of a ratio scale is fixed, which means it has a fixed starting point.

Measurement scales

Some examples:

/ Industrial Design

- The research variables
- The research design
- Sample versus population

The research design

A research design is a blueprint or detailed plan for how a research study is to be completed (Thyer, 1993):

- operationalizing variables so they can be measured,
- selecting a sample of interest to study,
- collecting date to be used as a basis for testing hypotheses,
- and analyzing the results

The research design: purposes

The functions of a research design:

- conceptualize an operational plan to undertake various procedures and tasks to complete the study (what will you do?)
- ensure that these procedures are adequate to obtain valid, objective and accurate answers to the research questions (quality of the approach)

Research design: nature of investigation

3 classes of studies:

- Experimental
- Non-experimental
- Quasi-experimental

Controlled versus natural environment

Experimental study designs

Many types of experimental designs:

- the after-only design
- the before-and-after design
- the control-group design
- the double-control design
- the comparative design
- the "matched control" experimental design
- the placebo design

After-only design

The population is being, or has been, exposed to an intervention.

What is the impact on the population?

Before-and-after design

[Change in dependent variable] =

[status of the dependent variable at the "after" observation] -[status of the dependent variable at the "before" observation]

Control-group design

Two population groups:

- a control group
- an experimental group

Comparative design

Compare the effectiveness of different treatments/interventions

Between-subject vs. Within-subject design

Counterbalancing to prevent order problems

Within subject design:

The same subjects may be tested at each level of the independent variable

Between-subject vs. Within-subject design

Between subject design:

Different group of subjects for each level of the independent variable

- The research variables
- The research design
- Sample versus population

Sample versus population

Sample representativeness

