
1

An Emotional InterFace for
a Music Gathering Application

Albert van Breemen
Philips Research, Software Architecture Group

Prof. Holstlaan 4 (WDC-1.034)
5656 AA Eindhoven

The Netherlands
albert.van.breemen@philips.com

Christoph Bartneck
Technical University of Eindhoven

Faculty of Industrial Design
Den Dolech 2, 5600 MB Eindhoven

The Netherlands
christoph@bartneck.de

ABSTRACT
Listening to music while traveling is a pleasant activity.
The latest MP3 players demonstrate that storage and
management of music will not be a problem in the near
future. Besides listening to music the user might also want
to gather new music from the internet. We propose a music
gathering application that helps the user to collect music
and that is able to proactively search and download music
based on the user’s music preferences. Furthermore, we
developed an emotional interface character that provides
instant and natural feedback on the status of the application.

Keywords
Emotions, music, character, agent

INTRODUCTION
Listening to music is a pleasant activity while traveling.
Many people would not like to miss it and thus carry
Walkmans, portable CD Players or MP3 Players to shorten
their journey. Recent developments in data compression [3]
and data storage [15] made it possible to store vast music
collections on mobile devices, such as the iPod [1] or the
iPaq [6]. The problem of data storage will become
negligible in the near future. To illustrate, the first
generation of MP3 players used memory modules to store
up to 85 songs (256Mb). Current generation MP3 players
use hard disks to store up to 10.000 songs (30Gb). It is
certain that the storage capacity will increase even more in
the future. The playback and music management
functionality of these devices have also been solved to a
large degree. Even huge music collections that reside on the
latest MP3 players have usable interfaces that enable the
listener to quickly browse and play the desired music [1].
The jukebox functionality of mobile devices is therefore
not in the scope of this study.

Besides listening to music, the user may also use the time
on a journey to search for new music and gather it through
the internet. Obviously, the mobile device needs access to
the internet to perform these tasks. Wireless networks
become increasingly popular and will possibly become
standard in public spaces dedicated to traveling, such as
airports, trains and buses. Several airports, such as the
Changi Airport in Singapore and the Copenhagen Airport,
already offer their customers free wireless network access.
Some mobile devices, such as the iPaq offer wireless
network cards that enable them to use such networks. With

this technology the user will be able to access the internet
and gather the desired music. Gathering music includes the
download and exchange of free available music and the
purchase of copyright protected material. In the latter case,
however, the user would like to purchase the music from
the cheapest available sources.

The music scene develops very fast and new albums are
released every day. The user cannot be aware of the latest
releases and trends all the time. Therefore the music
gathering application should proactively search and
download music based on the user’s preferences.

The remainder of this article is structured as follows. In the
first section we discuss the proactive music gathering
application. We focus on the functional requirements and
the application’s architecture. Next, we discuss the problem
of presenting the status information of the application to the
user. This motivates the subsequent section in which the
user interface design is presented, in particular the usage of
an emotional character that provides natural and instant
feedback to the user. A simplified OCC model [10] is used
for the character’s emotion synthesis. Afterwards we
present the results we have obtained thus far. Finally, we
draw conclusions and discuss future research directions.

PROACTIVE MUSIC GATHERING
Functional Requirements
In order to derive a set of functional requirements we first
created several scenarios. Scenarios are short stories that
capture the essential features and characteristics of a
problem, application or vision. In our case we developed
scenarios of travelers who want to obtain new music. By
analyzing the scenarios, we were able to derive a set of
functional requirements for our application architecture. In
the scenarios we did not incorporate Digital Right
Management (DRM) issues and paying models even
though they would play an important role for a commercial
use of the application. Our research focuses on the search,
download and user interface aspects of proactive music
gathering. The analysis of the scenarios focused on the
information need of the application to function properly.
We identified four needs of information that are essential
for realizing proactive music gathering.

First, the application should have information about the
existence of music items such as specific songs and albums.

Breemen, A., & Bartneck, C. (2002). An Emotional Interface for a Music Gathering Application.
Proceedings of the Philips User Interface Conference (PUI2002), Eindhoven.

2

This information is needed in order to know what music
items in general exists and can be downloaded.

Second, the application should know what kind of music
the user likes and what specific requests the user has with
respect to obtaining particular music. The application needs
thus a profile of the user. This profile should contain
information about the preferences of the user with regard to
particular music aspects (e.g. artist, year, label, title), as
well as information about the whole music collection and
the user's music playback behavior.

Third, the application should have meta-data about music
items. For instance, the application should know the artist,
title or release year of a song or album, it should know
which songs are on a particular album as well as how many
tracks there are on the album. Meta data is needed in order
to reason which music items are liked or disliked by the
user.

Last, the application needs information about places where
to download the music items, e.g. information about
download sites on the Internet.

Application Architecture
To come to an overall architecture for the music gathering
application we've applied several composition principles.
First, we've made a difference between non-agent and
agent components. The non-agent components of our
architecture reflex traditional components such as
collections/databases and media (mp3) playing software
components. The agent components reflects components
that actively make decisions and whose behavior can be
explained by adopting an intentional stance [7] by
attributing believes, desires (goals) and intentions to them.
A second composition principle is to use a central agent
versus support agents in our architecture. The central agent
tackles the problem "what music items to obtain" and
creates application level goals, while the support agents
provide the central agent with relevant information from
the Internet and are responsible for the "how to obtain a
particular music item" problem. Finally, we've used the
mirroring of external (Internet) resources composition
principle. This means that for every relevant information
source on the Internet we've designed an agent that knows
the protocols to obtain that information and that knows how
to translate it into an internally specified format that is
understood by the components of the architecture.

Figure 1: Proactive music gathering application architecture.

Figure 1 illustrates the different components of the music
gathering application. The non-agent components are the
Preference Collection, the MP3 Player and the MP3
Collection. These components are internally structured
using traditional software engineering techniques. The
agent components are:

• Music Collector Agent, a central agent who
reasons about what music items to obtain.

• OpenNap Agent, a support agent that handles the
problem of downloading MP3 files from OpenNap
servers on the Internet.

• Chart Agent, a support agent that monitors
particular Internet sites with hit chart information.
When new chart information becomes available
this agent parses the Internet site and sends new
hit chart information to the Music Collector
Agent.

• Profile Agent, a support agent that generates a
profile of the user based on information about the
user's mp3 collection and on the user's playback
behavior.

• FreeDB Agent, a support agent that knows how to
access the FreeDB Internet site [8] to obtain
information about the tracks of an album.

The internal architecture of the individual agents is attuned
to the problems they tackle and therefore each agent has a
different internal architecture. The Music Collector Agent
must make inferences about the music items the user likes.
We have adopted a Belief Desire Intention (BDI)
architecture [4; 16] for the Music Collector Agent. The
roots of the BDI architecture can be traced back to the work
of Bratman, Isreal & Pollack [4] who discussed the issue
that an architecture for resource-bounded agents, such as
our Music Collector Agent, should incorporate means-end
reasoning, weighing of competing alternatives and an
interaction mechanism for these two processes. In
particular, the BDI architecture is aimed at constraining the
amount of practical reasoning. We have used the BDI
architecture because it is a flexible reasoning mechanism
that is dedicated to operate in such a practical problem
domain as the Internet.

The OpenNap Agent must effectively download MP3 files
from OpenNap servers. Because OpenNap servers are
highly uncertain, dynamic and non-episodic worlds the
OpenNap Agent's architecture is based on reinforcement
learning techniques [14]. Servers and users, for example,
come and go in an unpredictable manner. Some users do
not share files, others have a limit on the number of
uploaders they serve and not every server shares the same
set of files. Reinforcement learning provides mechanisms
to learn a model of this uncertainty while acting in the
problem domain. Subsequently, this model is used to
determine the best actions that can be performed; that is, to
select those servers and users that have a high probability
of returning desirable results.

Breemen, A., & Bartneck, C. (2002). An Emotional Interface for a Music Gathering Application.
Proceedings of the Philips User Interface Conference (PUI2002), Eindhoven.

3

To incorporate DRM and payment models another
dedicated agent would replace the OpenNap Agent. This
new agent would have to implement the protocols needed
to buy music from a particular source. Also, this new agent
would be able to compare different internet sources and
purchase the desired music from the cheapest source.

The task of the Chart Agent is relatively simple compared
to the two previous agents: it periodically parses Internet
sites (html documents) with hit chart information. It has a
dedicated architecture for this purpose that consists of a
sensor to retrieve the html document, a html parser to
extract the relevant hit chart information and a database to
store the information.

The Profile Agent's architecture is based on techniques to
calculate statistics about the MP3 Collection and the user's
playback behavior. For every music aspect, such as artist
and genre, a histogram is calculated that contains
information about how many songs in the user’s music
collection contain that specific aspect. The histogram
calculates, for example, how many songs in the collections
are from David Bowie and how many songs are Jazz.
Furthermore the histogram calculates the relative
preference for each of these aspects. These histograms are
used by the Music Collector Agent to decide which music
items to download.

Finally, the FreeDB Agent has, just like the Chart Agent, a
dedicated architecture that implements the protocol to
access the online FreeDB music database. FreeDB is an
open source online database with music album metadata.

User Information
The music gathering application is complex and many
problems may occur during the execution of the
application. Let us consider the OpenNap agent as an
example. OpenNap servers can be characterized as highly
uncertain, dynamic and non-episodic worlds. Sockets are
used to connect to an OpenNap server. However, it is
unpredictable whether a particular OpenNap server will be
available at a particular moment. Once a socket connection
has been made, the OpenNap Agent has to log into the
OpenNap server. Not all OpenNap servers allow everybody
to log in (private OpenNap servers) and most servers have
set restrictions such as the number of connected users and
the number of files that these users have to share. If a client
has logged in, it can start searching for files. The result of a
search request depends on the content being shared by
other. So, a search query returns a list of users that share
the particular file. If the list contains items, the client can
start requesting the other client to start a file transfer. File
transfers may also lead to difficulties. Most clients restrict
the number of uploads they serve and firewalls may render
the transfer completely inoperative.

The user does not need to know all the details about the
events that are generated by the application. When the user
takes a quick look at his or her MP3 player he or she may
only want to roughly know how well the music gathering
progresses. If the progress is unsatisfactory the user may

want to take actions to resolve the problem. In the next
section the design of the user interface is discussed, in
particular how it summarizes the information complexity
described above.

INTERFACE DESIGN
The design of interface for mobile devices faces several
challenges. First, the screen size is small compared to the
size of standard computer screens. The popular iPaq, for
example has only a 240x320 pixel screen. The screen
resolution is just as low as on computer screens which
makes it inconvenient to read longer passages of text or to
identify small icons.

Second, the mobile context in which these devices are used
differs considerably from standard PC workplaces. Mobile
devices are usually held in one hand and the other performs
the control actions. The devices are also used outside of the
user’s home or workplace.

Third, one can distinguish the various mobile devices by
their input methods. Several devices use a small keyboard
or keypad [12], while others use a pen [6; 11]. Also
combinations of the two main input methods are available
[9]. None of the input methods can yet compete with the
efficiency and effectiveness of the standard PC mouse and
keyboard. Hence, long writing tasks are usually done with
help of the PC. However, the control of simpl graphical
user interfaces (GUI) works rather well on pen-based
devices.

Another input method for mobile devices is speech. Several
mobile phones do already use voice dialing, which is a
primitive form of a speech interface. In the future speech
might become a more dominant input method for mobile
devices, since it would allow the easy entry of text. One of
the difficulties for speech-based interfaces is that the two
partners can never be sure that the information transmitted
will be perceived successfully and understood correctly. If
the means to ensure intelligibility and interpretability of the
messages do not result in a successful communication, the
speakers have to resort to feedback. Dialogue control acts
form the majority of this feedback [5]. The meaning of a
certain message might also be amplified by employing
gestures, body posture and emotional facial expressions. To
be able to employ the full range of dialogue control acts
and to amplify the meaning of a message with emotional
expression the mobile device needs an anthropomorphic
entity to execute facial expressions and gestures. This
entity could employ the dialogue control acts
simultaneously to the speech acts, so that the user has
natural and constant feedback about the status of the
information transmission. However, the noisy
environments in which mobile devices are used, such as
train stations and buses, pose a considerable challenge for
speech systems. Current speech recognition software is not
sophisticated enough to operate in these environments and
therefore the speech input method was not used for the
music gathering application.

Breemen, A., & Bartneck, C. (2002). An Emotional Interface for a Music Gathering Application.
Proceedings of the Philips User Interface Conference (PUI2002), Eindhoven.

4

Last, the complex information of the status of the music
gathering should be available to the user at a glance, similar
to checking the time on a watch. Given the small screen
size and resolution any of the standard GUI elements, such
as multiple progress bars and text logs, seem unsuitable.
Therefore, the interface for the music gathering application
is optimized to a screen size of 240x320, which is a
standard size for current mobile devices. The interface is
split into four tabs that correspond with the four steps the
user has to perform to gather music.

Search tab
In the search tab the user enters the artist, album or song he
or she would like to gather (see Figure 2).

Figure 2: The search tab.

The result of the search is displayed in form of a
hierarchical tree structure, ordered by artist, album and
song. If the user, for example, is looking for music of the
band “Galaxy 500” then the result field will display the
albums of this band and within these the songs that belong
to each album. The user may now select any combination
of albums and songs that he or she would like to gather.

Status tab
The status tab provides feedback on the current status of the
music gathering (see Figure 3).

The numerous aspects of this status, such as the number of
available servers, speed of the download and the
availability of chart information are too complex to be
visualized given the small screen size. Therefore a comic
character face is used to provide a natural and instant
feedback to the user. The character is based on eMuu, an
embodied emotional character developed by Bartneck [2].
The character uses emotional facial expressions to
communicate the status of the gathering application to the
user. A simplified OCC emotion model [10] is used to map
the numerous events and actions to emotional states and
their intensities (see Figure 4).

The subsection chosen from the OCC model focuses on the
well-being type, creating a character that is able to
communicate its internal emotional state to the world. The

well-being type emotions are mapped to a set of three
different emotional expressions: happiness, anger and
sadness. In short, all the positive events and actions will
result in happiness, all the negative events will result in
sadness and all the negative actions will result in anger.
The distinction of what is an event and what is an action is
based on accountability. It is impossible to blame a person
for the failure in the internet, but if a specific person
cancels the download of the user then the character has a
person to be angry at. The intensity of each emotional state
is based on certain variables as described in Table 1.

Figure 3: The status tab.

We have identified four events in our application that are
relevant for the synthesis of emotions. First, a
NewChartInfo event is generated whenever the Chart Agent
has obtained new hit chart information from the Internet.
New chart information makes the character happy. The
second event is the NewGoal event. The Music Collector
Agent generates this event when it has decided to obtain a
new song or album. Creating new goals makes the
character happy as well. The third event is the
NewOpenNapInfo event. It is generated by the OpenNap
Agent when new information about OpenNap servers has
been found. Because this information increases the
likelihood of obtaining songs, the character will be happy
when this event occurs. Finally, the SearchResult event is
the fourth event in our application that is relevant for
generating emotions. The SearchResult event is generated
by the OpenNap Agent after it has searched for users that
share a particular song. When there are users sharing the
song the character will be happy; otherwise it will become
sad.

Besides events we have identified several actions of agents
that are relevant for the synthesis of emotions. The user can
be considered an agent and performs two kinds of actions.
Either the user performs an UserRequest action to instruct
the music gathering application to download a particular
song or album, or the user performs a CancelUserRequest
action to abort downloading a particular song or album.
The character will become happy when the user requests to

Breemen, A., & Bartneck, C. (2002). An Emotional Interface for a Music Gathering Application.
Proceedings of the Philips User Interface Conference (PUI2002), Eindhoven.

5

download a song or album and it will become angry when
the user cancels a request, especially when the application
has almost completed the download.

Table 1: The intensity of events and actions.

Events (happy & sad) Variables to calculate intensity

NewChartInfo Probability of happening, number of
new hits

NewGoal Probability of happening, goal type

NewOpenNapInfo Probability of happening, number of
new OpenNap servers

SearchResult Number of results

Actions (happy & anger) Variables to calculate intensity

UserRequest Last time user made a request, type of
music item requested

CancelMusicItem The progress status of the request

GetAlbumInformation Probability of success, actual success or
failure state of the action

ConnectToAnyServer Probability of success, number of failed
ConnectToSpecificServer actions

ConnectToSpecificServer Probability of success, last time a
successful connection was made

DownloadFromAnyuser Probability of success, number of failed
DownloadFromSpecificUser actions

DownloadFromSpecificUser Probability of success, last time a
successful download occurred

DownloadedSomeBytes Probability of success

DownloadAbortedByPeer Probability of happening, progress status
of download

The FreeDB Agent performs the GetAlbumInformation
action when the Music Collector Agent requests
information about an album. When the action succeeds and
information is found about an album, the character will
become happy. Otherwise the character becomes angry.
The OpenNap Agent performs five actions. The
ConnectToSpecificServer action is part of the
ConnectToAnyServer action. Both actions are used to
connect to an OpenNap server. The DownloadSomeBytes
actions is part of the DownloadFromSpecificUser action,
which in itself is part of the DownloadFromAnyUser
action. All three actions are performed when the OpenNap
Agent wants to download a song. Finally, the
DownloadAbortedByPeer action is performed by the peer
(user) from which the OpenNap Agent is downloading a
file. This action makes the character angry.

The emotional intensity of the events and actions is
calculated by using relevant variables that are listed in
Table 1. The intensity of a NewChartInfo event, for
example, is based on the probability of this event to happen
and the number of new hits that has been retrieved. The
character will by happier in case the probability of the
NewChartEvent is low and the number of new hits is large.
The intensity of the CancelMusicItem action is based on the
progress of the request. The more effort, in terms of
download completion, has been made to fulfill the request
the angrier the character will be if the request is canceled.
Finally, ConnectToAnyServer action is a composed of
several ConnectToSpecificServer actions. In order to
connect to a server the application has to try several
specific servers. The intensity of the ConnectToAnyServer
action depends on how quickly the application can
normally connect to a server (probability of success) and
the number of times it had to try a specific server before it
had a connection.

Figure 4: The simplified OCC model of the music gathering application.

Breemen, A., & Bartneck, C. (2002). An Emotional Interface for a Music Gathering Application.
Proceedings of the Philips User Interface Conference (PUI2002), Eindhoven.

6

Files tab
The files tab displays the files that are currently in the
download directory of the application. All songs that the
user downloaded, including the ones being currently
processed, are shown in an hierarchy tree. This tree
structure allows the user to select any combination of artist,
album and songs and to perform actions on the selection.
The user may, for example, listen to a song to check its
correctness and quality or retry downloading songs that
have not been completely downloaded due to an error.
Moreover, the user can delete songs of any artist or album
or move them to the music library of his or her jukebox
application.

Figure 5: The files tab.

Settings tab
In the settings tab the user can adjust the system
preferences. The proactive music gathering can be switched
on an off, the user’s music profile can be edited and the
desired music quality for the downloaded songs can be
selected from a predefined list.

Figure 6: The settings tab.

EVALUATION
Several tests were performed to evaluate the application’s
performance. The performance was highly satisfactory. The
application was able to combine the user’s profile with real
time hit chart information from the Internet to search and
download songs from OpenNap servers. Because the
OpenNap Agent incorporated reinforcement learning
techniques, the performance of connecting to servers and
downloading from users increased over time. The
participants of an informal usability evaluation were
particularly satisfied with the possibility to download
complete albums, because the current peer-to-peer network
clients only allow the download of single songs.

A typical problem of adaptive systems, like the music
gathering application, is the creation of the initial user
profile. This problem is often referred to as the “bootstrap
problem”. Our application is able to generate a good initial
user profile by analyzing the metadata of the user’s existing
music collection. A first test revealed that many MP3 users
have a collection of at least 300 MP3 files, of which about
half contain usable metadata. The initial user profile
generated from these MP3 files turned out to be quite
satisfying and many users commented that the profile
matched their preferences. A more formal user test is in
preparation.

CONCLUSION
We described a music gathering application with an
emotional interface character for mobile Internet-enabled
MP3 players. The storage capacity and jukebox
functionality of mobile MP3 players are not a critical issues
anymore. However, the acquisition of new content remains
a problem. We proposed a proactive music gathering
application that automatically obtains music from the
Internet based on the user’s profile. The application’s
architecture consists of several agent and non-agent
software components.

The numerous aspects of the status of the proactive music
gathering application, such as the number of available
servers, speed of the download and the availability of chart
information are too complex to be visualized given the
small screen size of a mobile MP3 player. Therefore a
comic character face based on eMuu [2] is used to provide
a natural and instant feedback to the user. We have
implemented the user interface by using four tabs that
resembles the steps the user has to perform to gather music.

Further research
Speech technology could possibly improve the usability of
the music gathering application. The user would be able to
enter his or her search query, select actions and check on
the status of the gathering by using speech. The screen
character could provide natural feedback of the status of the
dialogue by providing conversational and emotional facial
expressions.

The music gathering application should cooperate closely
with the jukebox application on the mobile device. The user
should be able to use a “gather more” action in the jukebox

Breemen, A., & Bartneck, C. (2002). An Emotional Interface for a Music Gathering Application.
Proceedings of the Philips User Interface Conference (PUI2002), Eindhoven.

7

to gather more music of a particular artist that the user was
just listening to. The music gathering application should be
able to quickly hand over its downloaded music to the
jukebox.

A key component for the success of consumer electronics is
personalization. Users of mobile phones even pay for
customized icons and melodies. The music gathering
application can be extended to include several characters
and the possibility to download even more through the
internet.

The character could even become the personal DJ for the
user. Supported by proactively downloaded music it would
generate personalized playlists that the jukebox application
would use to create a radio program for the user. The
personal DJ could be context aware and generate activity-
attuned playlists for birthdays, romantic evenings or
parties. The downloaded content is not limited to music,
but could also include the latest stock market information
or traffic news. The personal DJ could also help improving
the accuracy of the application’s user profile by engaging
the user in a game-like setting. In a playful fashion the
application could receive direct feedback on the user’s
music preferences.

Currently, the Chart Agent and the FreeDB Agent parse
html documents from the Internet to obtain the desired hit
chart and music album information. However, the layout of
these internet pages and hence the html code change
without notice which made it necessary to repeatedly adjust
the agent’s html parsers. This is a common problem for
internet applications and there are three solutions available.
First, the parser can be changed every time the html
document changes. We used this simple solution for our
html parser. Second, the parser could be equipped with
additional intelligence that enables it to handle arbitrary
changes in the document structure. Advanced methods
from the area of artificial intelligence would be necessary,
which are beyond the scope of this study. Third, the
relevant information in the html page can be labeled with
metadata using the Extendible Markup Language (XML) or
the Resource Description Framework (RDF) standard. First
internet music databases exist that use the RDF standard
[17] to publish their metadata [13].

REFERENCES
1. Apple. (2002). iPod, from http://www.apple.com/ipod/

2. Bartneck, C. (2002). eMuu - an embodied emotional
character for the ambient intelligent home. Unpublished
Ph.D. thesis, Eindhoven University of Technology,
Eindhoven.

3. Brandenburg, K. S., G. (1994). The ISO/MPEG-1
Audio Codec: A Generic Standard for Coding of High
Quality Digital Audio. JAES, 42, 780-792.

4. Bratman, M.E. , Isreal, D.J., Pollack, M.E. (1988). Plans
and Resource-Bounded Practical Reasoning.
Computational Intelligence, 4(4), 349-355.

5. Bunt, H. C. (1989). Information dialogues as
Communicative Action in Relation to partner Modelling
and Information Processing. In F. N. Taylor & D. G.
Bouwhuis (Eds.), The Structure of Multimodal Dialogue
(pp. 47-73). Amsterdam: Elsevier Science Publishers.

6. Compaq. (2002). iPaq, from
http://www.compaq.com/products/handhelds/pocketpc/

7. Dennett, D. C. (1981). Intentional Systems. In J.
Haugeland (Ed.), Mind Design (pp. 220-242): Bradford
Books.

8. FreeDB. (2002). FreeDB, from http://www.freedb.org

9. Nokia. (2002). Nokia Communicator 9290, from
http://www.nokiausa.com/communicator

10. Ortony, A., Clore, G., & Collins, A. (1988). The
Cognitive Structure of Emotions. Cambridge:
Cambridge University Press.

11. Palm. (2002). PalmPilot, from http://www.palm.com/

12. Psion. (2002). Psion Revo, from
http://www.psionusa.com/PersonalMobility/Revo/index.
html

13. Swarts, A.(2002). MusicBrainz: A Semantic Web
Service, IEEE Intelligent Systems, 76-77

14. Sutton, R. S. B., A.G. (1998). Reinforcement Learning -
An Introduction. Cambridge: MIT Press.

15. Toshiba. (2002). Tosiba introduces world's highest
capacity 1.8-inch Hard Disk Drives, from
http://www.toshiba.com/taissdd/news/press44.shtml

16. Wooldridge, M. (2002). Multi-Agent System. Hoboken,
NJ: John Wiley & Sons.

17. W3C, (2002), RDF Standard, from
http://www.w3c.org/RDF/

Breemen, A., & Bartneck, C. (2002). An Emotional Interface for a Music Gathering Application.
Proceedings of the Philips User Interface Conference (PUI2002), Eindhoven.

