

	
		
			Skip to content		

		
			
				
					
											Christoph Bartneck, Ph.D.

												University of Canterbury, New Zealand

									

									Menu

					
													
									Home
	Contact
	Events
	Projects
	Shop
	Publications
	Courses
	Resume
	Press

							
						
											

							

											
					
											
				

					

		

	
		

	
		Creating PDF-files with iText
	

	
	
	
		After the installation of your Java editor, JSDK’s and setting the right class path to the iText.jar file you can start with your code in Java to create a PDF file.

First Class

Just start your class as learned in the Java assignments:

import java.io.FileOutputStream;

import java.io.IOException;

public class Testcase {

public static void main(String[] args) {

// code goes here

}

}

Add iText libaries

Now you need to import the iText libraries:

import java.io.FileOutputStream;

import java.io.IOException;

import com.lowagie.text.*;

import com.lowagie.text.pdf.PdfWriter;

public class Testcase {

public static void main(String[] args) {

// code goes here

}

}

Creating a document

Next, you can add a new document:

import java.io.FileOutputStream;

import java.io.IOException;

import com.lowagie.text.*;

import com.lowagie.text.pdf.PdfWriter;

public class Testcase {

public static void main(String[] args) {

System.out.println(“Printing PDF file ..”);

Rectangle pageSize = new Rectangle(0,0,2382,3369);

Document document = new Document(pageSize);

}

}

The System.out.println is a check to see if the creation of the PDF file is actually called after running your application.

Document setup

pageSize is a new rectangle instance which is going to contain some properties for the document instance about for example: size and color. The com.lowagie.text.Document object has 3 constructors:

public Document();

public Document(Rectangle pageSize);

public Document(Rectangle pageSize, int marginLeft, int marginRight, int marginTop, int marginBottom);

The first constructor calls the second one, with PageSize.A4 as parameter. The second constructor calls the third one, with 36 as value for each margin. So also possible is for example:

Document document = new Document(PageSize.A0);

PageSize.A0 automatically assigns the right values for a A0 size to the document instance. Further options are: A0-A10, LEGAL, LETTER, HALFLETTER, _11x17, LEDGER, NOTE, B0-B5, ARCH_A-ARCH_E, FLSA and FLSE.

Once our document is created, we can create one or more instances of writers that listen to this document. All writers should be derived from the abstract class com.lowagie.text.DocWriter. For the moment there are two possibilities: you can use com.lowagie.text.pdf.PdfWriter to generate documents in the Portable Document Format, or you can use com.lowagie.text.html.HtmlWriter to generate documents in HTML. If for instance you want to generate TeX-documents as well, you could write a package: m.lowagie.text.TeX.TeXWriter.

You can create an instance this way:

dfWriter.getInstance(document, new FileOutputStream(“filename.pdf”));

So including the exceptions you’ll get:

import java.io.FileOutputStream;

import java.io.IOException;

import com.lowagie.text.*;

import com.lowagie.text.pdf.PdfWriter;

public class Testcase {

public static void main(String[] args) {

System.out.println(“Printing PDF file ..”);

Rectangle pageSize = new Rectangle(0,0,2382,3369);

Document document = new Document(pageSize);

try { PdfWriter.getInstance(document, new FileOutputStream(“filename.pdf”));}

catch(DocumentException de) {

System.err.println(de.getMessage());

}

catch(IOException ioe) {

System.err.println(ioe.getMessage());

}

}

}

Visuals

Now it’s time to get some visuals into the PDF file. What you’ll have to is open the document, add graphics and then close the document. In this example we add a line to the document that says: “Hi, this is your PDF file!”

import java.io.FileOutputStream;

import java.io.IOException;

import com.lowagie.text.*;

import com.lowagie.text.pdf.PdfWriter;

public class Testcase {

public static void main(String[] args) {

System.out.println("Printing PDF file ..");

Rectangle pageSize = new Rectangle(0,0,2382,3369);

Document document = new Document(pageSize);

try {

PdfWriter.getInstance(document, new FileOutputStream("filename.pdf"));

document.open();

document.add(new Paragraph("Hi, this is your PDF file!"));

}

catch(DocumentException de) {

System.err.println(de.getMessage());

}

catch(IOException ioe) {

System.err.println(ioe.getMessage());

}

document.close();

}

}

 Compile

Just compile and run this piece of code and you PDF file is created. If you open the PDF file the text is quite small, that’s because it’s on A0 format.

For more complex possibilities and features read the tutorials on:

	http://www.lowagie.com/iText/tutorial
	http://itext.sourceforge.net/docs/

	

	
		Author Christoph BartneckPosted on February 28, 2008July 31, 2009Categories Documentation			

			
			18 thoughts on “Creating PDF-files with iText”		

		
			
			
				Pingback: Design By Numbers Course | Christoph Bartneck, Ph.D. 			

		
	
			
				
					
												Anand says:					

					
						June 17, 2008 at 05:55					

									

				
					Sir,

I am trying to upload a text file into PDF format, and i am using NetBeans IDE 6.0.1. I have to add a java pdf library to NetBeans IDE application. How can I add java pdf library to NetBeans IDE application.

Please reply to my e-mail.

Thanks and Regards,

Anand

				

							
		
	
			
				
					
												Eric says:					

					
						December 3, 2008 at 09:22					

									

				
					Hi, thanks for the tutorial

The links have changed. New links are

http://itextdocs.lowagie.com/tutorial/

http://sourceforge.net/projects/itext/

				

							
		
	
			
				
					
												carlos says:					

					
						January 27, 2009 at 16:42					

									

				
					yo could add is you see the project tab at the booton there is afolder that says libraries righ click on the folder

				

							
		
	
			
				
					
												carlos says:					

					
						January 27, 2009 at 16:44					

									

				
					then chose add jar folder

then chose the jar file and is ready the compilation is now part of your project and you could use the packages by importint

i hope will help you

				

							
		
	
			
				
					
												Laurette says:					

					
						February 27, 2009 at 16:17					

									

				
					Thanks! This was very helpful! Short, sweet and no need to sift through tutorials to get started. :)

				

							
		
	
			
				
					
												Ajith Nishantha says:					

					
						March 31, 2009 at 06:25					

									

				
					it is so use full to my project . thanks so much

												Greg says:					

					
						April 23, 2009 at 17:40					

									

				
					I have an open document I am writing to. Instead of adding a new Paragraph Element, what if I want to write the entire contents of an existing PDF File?

				

							
		
	
			
				
					
												Luis says:					

					
						July 2, 2009 at 23:05					

									

				
					I have a problem con iText I need generate a document in landscape orientation; for that I imported a pdf file and write on it, the pdf that I import is in letter horizontal position, when the program generates the result pdf, the application always gave me a document with portrait position, the text that program puts in document are in correct orientation but the document are wrong orientation, I don’t know why the code read the base pdf in landscape position and gave one in portrait, the page size are read and asigned with these commands

Rectangle pageSize = reader.getPageSize(1);

document = new Document(pageSize);

If I use the method rotate in

document = new Document(pageSize.rotate());

I obtain a document in landascape but the base pdf are in portrait position and cutted by the size of the page

I don’t know how do for obtain a pdf in landascape position. :(correctly

Please Help me

				

							
		
	
			
				
					
												Manfred says:					

					
						October 29, 2009 at 04:59					

									

				
					@Luis: it’s already a while ago that you have posted that question, so I assume that you have solved the problem. Anyway, here’s my solution:

Rectangle a4 = PageSize.A4;

Rectangle a4Landscape = a4.rotate();

Document doc = new Document(a4Landscape);

For me, it works like a charm… The paper is in landscape format and the content is written in the correct orientation.

				

							
		
	
			
				
					
												Rajesh Voruganti says:					

					
						November 9, 2009 at 08:00					

									

				
					Rotated Rectangle with stroking not printed accurately while PDF Generating

				

							
		
	
			
				
					
												melyvin says:					

					
						March 8, 2010 at 09:12					

									

				
					hi i am experiencing some difficulties such that my program has an error and it tells me the package com.lowagie.text does not exist even after importing iText 2.0 please help

				

							
		
	
			
				
					
												victor edward says:					

					
						September 28, 2010 at 23:46					

									

				
					Hi I have a problem when sending print the PDF document created adobe reader tells me that can not display this site and reviewing and only happens when I add lines, remove them and no error appears, I leave the code as the sample probe page of the creators and nothing itext

Imports iTextSharp.text.Document

Imports iTextSharp.text.pdf

Imports iTextSharp.text

Imports iTextSharp.text.pdf.PdfWriter

Imports System.IO

MemStream Dim As New MemoryStream ()

 Dim As iTextSharp.text.pdf.PdfWriter pdfw

 Dim cb As PdfContentByte

 DocumentPDF Dim As Document = New Document ()

DocumentPDF = New Document (iTextSharp.text.PageSize.LETTER, 0, 0, 0, 0)

 ‘Open the document

 DocumentPDF.Open ()

 cb = pdfw.DirectContent

 ‘Add a page.

 DocumentPDF.NewPage ()

 ‘Start the Text

 cb.BeginText ()

 cb.SaveState ()

 cb.SetLineWidth (8)

 cb.SetLineCap (5)

 cb.MoveTo (350, 500)

 cb.LineTo (540, 500)

 cb.Stroke ()

 cb.RestoreState ()

 cb.EndText ()

 pdfw.Flush ()

 ‘Dim As jAction PdfAction.JavaScript PDFACTION = (“this.notprint (true);” & vbCr, pdfw)

 ‘Pdfw.AddJavaScript (jAction)

 ‘Close the document

 DocumentPDF.CloseDocument ()

				

							
		
	
			
				
					
												Diogo says:					

					
						March 16, 2011 at 16:12					

									

				
					Thank you! it helped me a lot!

				

							
		
	
			
				
					
												raviraj says:					

					
						December 5, 2011 at 09:59					

									

				
					i had run the code but i did not find any pdf file ..where it can be stored ?

				

							
		
	
			
				
					
												Kelly says:					

					
						December 2, 2013 at 08:48					

									

				
					You can create PDF file with Aspose’s Java Component for PDF file known as Aspose.PDF for Java. This Library offers many other features for PDF file that developers can use in their Application.

				

							
		
	
			
				
					
												Prashant Shukla says:					

					
						December 13, 2013 at 11:33					

									

				
					My pdf is generating and also displaying page numbers(at bottom) of every pdf page.I am displaying table of contents in my pdf but i need to know how to get exact location(page number) of each section of dynamically generated PDF so that I can write Table Of contents with page numbers.

				

							
		
	
			
				
					
												Komal says:					

					
						February 5, 2014 at 11:05					

									

				
					Good Solution given by carlos

				

							
		

		
	
	
		
		Leave a Reply
Your email address will not be published. Required fields are marked *
Comment *
Name *

Email *

Website

Δ

	

	

	
		Post navigation

		Previous Previous post: Beginners Guide to create a Digital Media Center
Next Next post: Step-by-step installation for iText on Mac OS X

	
	

	

	
		Search

	
		
			Search for:		
		
	
	
		Search	

The Ideal Order
			
This book is now available as a radio play on your favourite platforms including Apple iTunes, Google Music, Stitcher, TuneIn.

		 Human-Robot Interaction
	Peer Review Review
	Should you use chatGPT?
	The HRI Journal Publishing Guide
	Writing for the second edition completed
	Second Edition Writing Workshop
	Aldebaran Again
	Zombies
	Autonomous Vehicles – Do We Really Know The Risks?
	Emotions And Consciousness In Robots
	The Sad Robot

HRI Podcast

Links

		Amazon Profile
	Flickr
	FULFILL.
	GrabCAD
	Human-Robot Interaction
	LEGO Minifigure
	Rebrickable
	RoboDB
	ROILA
	YouTube

Admin

			Log in
	Entries feed
	Comments feed
	WordPress.org

			

		

		
							
						Home
	Contact
	Events
	Projects
	Shop
	Publications
	Courses
	Resume
	Press

				
			
			
			
								Christoph Bartneck, Ph.D.
								
					Proudly powered by WordPress				
			

		
	

